全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Development of the Serosal Mesothelium

DOI: 10.3390/jdb1020064

Keywords: mesothelium, proepicardium, epicardium, intestine, heart

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mesothelia in the adult vertebrate are the simple squamous epithelia covering all coelomic organs and body cavities. Until recently, analysis of the generation and differentiative potential of mesothelia in organogenesis has largely focused on development of visceral mesothelium of the heart; the epicardium and its progenitor, the proepicardium. Here, we review emerging data on the development and differentiation of serosal mesothelium, the covering of the gastrointestinal tract. This literature demonstrates that serosal mesothelium is generated through a completely different mechanism than that seen in the heart suggesting that commitment of progenitors to this cell lineage does not follow a common pathway. The differentiative potential of serosal mesothelium is also discussed in comparison to that observed for progeny of the proepicardium/epicardium. In our review of the literature, we point out gaps in our understanding of serosal mesothelial development and that of mesothelial development as a whole.

References

[1]  Herrick, S.E.; Mutsaers, S.E. Mesothelial progenitor cells and their potential in tissue engineering. Int. J. Biochem. Cell. Biol. 2004, 36, 621–642, doi:10.1016/j.biocel.2003.11.002.
[2]  Michailova, T.N.; Usunoff, K.G. Serosal membranes (pleura, pericardium, peritoneum)-normal structure, development and experimental pathology. Adv. Anat. Embryol. Cel. 2006, 183, 1–142, doi:10.1007/3-540-28045-6_1.
[3]  Bloom, W.; Fawcett, D.W. A textbook of histology, 10th ed.; Saunders: Philadelphia, PA, USA, 1975; p. 1033.
[4]  Gaudio, E.; Rendina, E.A.; Pannarale, L.; Ricci, C.; Marinozzi, G. Surface morphology of the human pleura. A scanning electron microscopic study. Chest. 1988, 93, 149–153, doi:10.1378/chest.93.1.149.
[5]  Fawcett, D.W.; Bloom, W.; Raviola, E. A Textbook of Histology, 12th ed.; Chapman & Hall: New York, NY, USA, 1994; p. 964.
[6]  Michailova, K.N.; Usunoff, K.G. Serosal membranes (pleura, pericardium, peritoneum). Normal structure, development and experimental pathology. Adv. Anat. Embryol. Cell. Biol. 2006, 183, 1–144, doi:10.1007/3-540-28045-6_1.
[7]  Wada, A.M.; Reese, D.E.; Bader, D.M. Bves: Prototype of a new class of cell adhesion molecules expressed during coronary artery development. Development 2001, 128, 2085–2093.
[8]  Reese, D.E.; Zavaljevski, M.; Streiff, N.L.; Bader, D. Bves: A novel gene expressed during coronary blood vessel development. Dev. Biol. 1999, 209, 159–171, doi:10.1006/dbio.1999.9246.
[9]  Chan, R.; Edwards, B.F.; Hu, R.; Rossitto, P.V.; Min, B.H.; Lund, J.K.; Cardiff, R.D. Characterization of two monoclonal antibodies in an immunohistochemical study of keratin 8 and 18 expression. Am. J. Clin. Pathol. 1988, 89, 472–480.
[10]  Zhu, Z.; Yao, J.; Wang, F.; Xu, Q. Tnf-alpha and the phenotypic transformation of human peritoneal mesothelial cell. Chin. Med. J. 2002, 115, 513–517.
[11]  Breborowicz, A.; Kuzlan-Pawlaczyk, M.; Wieczorowska-Tobis, K.; Wisniewska, J.; Tam, P.; French, I.; Wu, G. The effect of n-acetylglucosamine as a substrate for in vitro synthesis of glycosaminoglycans by human peritoneal mesothelial cells and fibroblasts. Adv. Perit. Dial. 1998, 14, 31–35.
[12]  Breborowicz, A.; Wieczorowska, K.; Martis, L.; Oreopoulos, D.G. Glycosaminoglycan chondroitin sulphate prevents loss of ultrafiltration during peritoneal dialysis in rats. Nephron. 1994, 67, 346–350, doi:10.1159/000187991.
[13]  Cheong, Y.C.; Laird, S.M.; Li, T.C.; Shelton, J.B.; Ledger, W.L.; Cooke, I.D. Peritoneal healing and adhesion formation/reformation. Hum. Reprod. Update 2001, 7, 556–566, doi:10.1093/humupd/7.6.556.
[14]  Yung, S.; Chan, T.M. Mesothelial cells. Peritoneal Dialysis International 2007, 27, S110–S115.
[15]  Yung, S.; Chan, T.M. Peritoneal proteoglycans: Much more than ground substance. Peritoneal Dialysis Int. 2007, 27, 375–390.
[16]  Williams, J.D.; Craig, K.J.; Topley, N.; Von Ruhland, C.; Fallon, M.; Newman, G.R.; Mackenzie, R.K.; Williams, G.T. Morphologic changes in the peritoneal membrane of patients with renal disease. J. Am. Soc. Nephrol. 2002, 13, 470–479.
[17]  Elmadbouh, I.; Chen, Y.; Louedec, L.; Silberman, S.; Pouzet, B.; Meilhac, O.; Michel, J.B. Mesothelial cell transplantation in the infarct scar induces neovascularization and improves heart function. Cardiovasc. Res. 2005, 68, 307–317, doi:10.1016/j.cardiores.2005.05.022.
[18]  diZerega, G.S.; Campeau, J.D. Peritoneal repair and post-surgical adhesion formation. Hum. Reprod. Update 2001, 7, 547–555, doi:10.1093/humupd/7.6.547.
[19]  Yung, S.; Chan, T.M. Pathophysiological changes to the peritoneal membrane during pd-related peritonitis: The role of mesothelial cells. Mediators Inflamm. 2012, doi:10.1155/2012/484167.
[20]  Meier, S. Development of the chick embryo mesoblast: Pronephros, lateral plate, and early vasculature. J. Embryo. Exp. Morphol. 1980, 55, 291–306.
[21]  Fawcett, D.W.; Bloom, W. A textbook of Histology, 11th ed.; Saunders: Philadelphia, PA, USA, 1986; p. 1017.
[22]  Moore, K.L.; Dalley, A.F.; Agur, A.M.R. Clinically Oriented Anatomy, 7th ed.; Wolters Kluwer/Lippincott Williams & Wilkins Health: Philadelphia, PA, 2014.
[23]  Fox, J.G. The Mouse in Biomedical Research, 2nd ed.; Elsevier, AP: Amsterdam, the Netherlands; Boston, MA, USA, 2007.
[24]  Hood, L.C.; Rosenquist, T.H. Coronary artery development in the chick: Origin and deployment of smooth muscle cells, and the effects of neural crest ablation. Anat. Rec. 1992, 234, 291–300, doi:10.1002/ar.1092340215.
[25]  Vrancken Peeters, M.P.; Gittenberger-de Groot, A.C.; Mentink, M.M.; Hungerford, J.E.; Little, C.D.; Poelmann, R.E. Differences in development of coronary arteries and veins. Cardiovasc. Res. 1997, 36, 101–110, doi:10.1016/S0008-6363(97)00146-6.
[26]  Thomason, R.T.; Bader, D.M.; Winters, N.I. Comprehensive timeline of mesodermal development in the quail small intestine. Dev. Dyn. 2012, 241, 1678–1694, doi:10.1002/dvdy.23855.
[27]  Winters, N.I.; Thomason, R.T.; Bader, D.M. Identification of a novel developmental mechanism in the generation of mesothelia. Development 2012, 139, 2926–2934, doi:10.1242/dev.082396.
[28]  Milgrom-Hoffman, M.; Harrelson, Z.; Ferrara, N.; Zelzer, E.; Evans, S.M.; Tzahor, E. The heart endocardium is derived from vascular endothelial progenitors. Development 2011, 138, 4777–4787, doi:10.1242/dev.061192.
[29]  Manasek, F.J. Embryonic development of the heart. II. Formation of the epicardium. J. Embryol. Exp. Morphol. 1969, 22, 333–348.
[30]  Meier, S.J.; Golinger, R.C.; McDonald, J.C. Locally recurrent breast cancer: A systemic disease. J. La State Med. Soc. 1980, 132, 4–7.
[31]  Nahirney, P.C.; Mikawa, T.; Fischman, D.A. Evidence for an extracellular matrix bridge guiding proepicardial cell migration to the myocardium of chick embryos. Dev. Dyn. 2003, 227, 511–523, doi:10.1002/dvdy.10335.
[32]  Mikawa, T.; Gourdie, R.G. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev. Biol. 1996, 174, 221–232, doi:10.1006/dbio.1996.0068.
[33]  Acharya, A.; Baek, S.T.; Huang, G.; Eskiocak, B.; Goetsch, S.; Sung, C.Y.; Banfi, S.; Sauer, M.F.; Olsen, G.S.; Duffield, J.S.; et al. The bhlh transcription factor tcf21 is required for lineage-specific emt of cardiac fibroblast progenitors. Development 2012, 139, 2139–2149, doi:10.1242/dev.079970.
[34]  Cai, C.L.; Martin, J.C.; Sun, Y.; Cui, L.; Wang, L.; Ouyang, K.; Yang, L.; Bu, L.; Liang, X.; Zhang, X.; et al. A myocardial lineage derives from tbx18 epicardial cells. Nature 2008, 454, 104–108, doi:10.1038/nature06969.
[35]  Zhou, B.; Ma, Q.; Rajagopal, S.; Wu, S.M.; Domian, I.; Rivera-Feliciano, J.; Jiang, D.; von Gise, A.; Ikeda, S.; Chien, K.R.; et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 2008, 454, 109–113, doi:10.1038/nature07060.
[36]  Zhou, B.; Pu, W.T. Epicardial epithelial-to-mesenchymal transition in injured heart. J. Cell. Mol. Med. 2011, 15, 2781–2783, doi:10.1111/j.1582-4934.2011.01450.x.
[37]  Wu, M.; Smith, C.L.; Hall, J.A.; Lee, I.; Luby-Phelps, K.; Tallquist, M.D. Epicardial spindle orientation controls cell entry into the myocardium. Dev. Cell. 2010, 19, 114–125, doi:10.1016/j.devcel.2010.06.011.
[38]  Mikawa, T. Retroviral targeting of fgf and fgfr in cardiomyocytes and coronary vascular cells during heart development. Ann. N. Y. Acad. Sci. 1995, 752, 506–516, doi:10.1111/j.1749-6632.1995.tb17459.x.
[39]  Mikawa, T.; Fischman, D.A. Retroviral analysis of cardiac morphogenesis: Discontinuous formation of coronary vessels. Proc. Natl. Acad. Sci. USA 1992, 89, 9504–9508, doi:10.1073/pnas.89.20.9504.
[40]  Manner, J.; Schlueter, J.; Brand, T. Experimental analyses of the function of the proepicardium using a new microsurgical procedure to induce loss-of-proepicardial-function in chick embryos. Dev. Dyn. 2005, 233, 1454–1463, doi:10.1002/dvdy.20487.
[41]  Katz, T.C.; Singh, M.K.; Degenhardt, K.; Rivera-Feliciano, J.; Johnson, R.L.; Epstein, J.A.; Tabin, C.J. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev. Cell. 2012, 22, 639–650, doi:10.1016/j.devcel.2012.01.012.
[42]  Manner, J. Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. Anat. Rec. 1999, 255, 212–226, doi:10.1002/(SICI)1097-0185(19990601)255:2<212::AID-AR11>3.0.CO;2-X.
[43]  Velkey, J.M.; Bernanke, D.H. Apoptosis during coronary artery orifice development in the chick embryo. Anat. Rec. 2001, 262, 310–317, doi:10.1002/1097-0185(20010301)262:3<310::AID-AR1040>3.0.CO;2-Y.
[44]  Waldo, K.L.; Willner, W.; Kirby, M.L. Origin of the proximal coronary artery stems and a review of ventricular vascularization in the chick embryo. Am. J. Anat. 1990, 188, 109–120, doi:10.1002/aja.1001880202.
[45]  Bronner, M.E.; LeDouarin, N.M. Development and evolution of the neural crest: An overview. Dev. Biol. 2012, 366, 2–9, doi:10.1016/j.ydbio.2011.12.042.
[46]  Pan, F.C.; Bankaitis, E.D.; Boyer, D.; Xu, X.; Van de Casteele, M.; Magnuson, M.A.; Heimberg, H.; Wright, C.V. Spatiotemporal patterns of multipotentiality in ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development 2013, 140, 751–764, doi:10.1242/dev.090159.
[47]  Rieck, S.; Bankaitis, E.D.; Wright, C.V. Lineage determinants in early endocrine development. Semin. Cell. Dev. Biol. 2012, 23, 673–684, doi:10.1016/j.semcdb.2012.06.005.
[48]  Wilm, B.; Ipenberg, A.; Hastie, N.D.; Burch, J.B.; Bader, D.M. The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development 2005, 132, 5317–5328, doi:10.1242/dev.02141.
[49]  Pennisi, D.J.; Ballard, V.L.; Mikawa, T. Epicardium is required for the full rate of myocyte proliferation and levels of expression of myocyte mitogenic factors fgf2 and its receptor, fgfr-1, but not for transmural myocardial patterning in the embryonic chick heart. Dev. Dyn. 2003, 228, 161–172, doi:10.1002/dvdy.10360.
[50]  le Noble, F.; Moyon, D.; Pardanaud, L.; Yuan, L.; Djonov, V.; Matthijsen, R.; Breant, C.; Fleury, V.; Eichmann, A. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Dev. 2004, 131, 361–375.
[51]  Perez-Pomares, J.M.; Macias, D.; Garcia-Garrido, L.; Munoz-Chapuli, R. The origin of the subepicardial mesenchyme in the avian embryo: An immunohistochemical and quail-chick chimera study. Dev. Biol. 1998, 200, 57–68, doi:10.1006/dbio.1998.8949.
[52]  Reese, D.E.; Mikawa, T.; Bader, D.M. Development of the coronary vessel system. Circ. Res. 2002, 91, 761–768, doi:10.1161/01.RES.0000038961.53759.3C.
[53]  Merki, E.; Zamora, M.; Raya, A.; Kawakami, Y.; Wang, J.; Zhang, X.; Burch, J.; Kubalak, S.W.; Kaliman, P.; Izpisua Belmonte, J.C.; et al. Epicardial retinoid x receptor alpha is required for myocardial growth and coronary artery formation. Proc. Natl. Acad. Sci. USA 2005, 102, 18455–18460, doi:10.1073/pnas.0504343102.
[54]  Zamora, M.; Manner, J.; Ruiz-Lozano, P. Epicardium-derived progenitor cells require beta-catenin for coronary artery formation. Proc. Natl. Acad. Sci. USA 2007, 104, 18109–18114, doi:10.1073/pnas.0702415104.
[55]  Rinkevich, Y.; Mori, T.; Sahoo, D.; Xu, P.X.; Bermingham, J.R., Jr.; Weissman, I.L. Identification and prospective isolation of a mesothelial precursor lineage giving rise to smooth muscle cells and fibroblasts for mammalian internal organs, and their vasculature. Nat. Cell. Biol. 2012, 14, 1251–1260, doi:10.1038/ncb2610.
[56]  Que, J.; Wilm, B.; Hasegawa, H.; Wang, F.; Bader, D.; Hogan, B.L. Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proc. Natl. Acad. Sci. USA 2008, 105, 16626–16630, doi:10.1073/pnas.0808649105.
[57]  Asahina, K.; Zhou, B.; Pu, W.T.; Tsukamoto, H. Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology. 2011, 53, 983–995, doi:10.1002/hep.24119.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133