全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Role of Prokineticin Receptor-1 in Epicardial Progenitor Cells

DOI: 10.3390/jdb1010020

Keywords: GPCR, prokineticin, EPDCs, angiogenesis, cardiomyopathy, renal defects, cardiac progenitor cells, receptor, signaling, kidney progenitor cells

Full-Text   Cite this paper   Add to My Lib

Abstract:

G protein-coupled receptors (GPCRs) form a large class of seven transmembrane (TM) domain receptors. The use of endogenous GPCR ligands to activate the stem cell maintenance or to direct cell differentiation would overcome many of the problems currently encountered in the use of stem cells, such as rapid in vitro differentiation and expansion or rejection in clinical applications. This review focuses on the definition of a new GPCR signaling pathway activated by peptide hormones, called “prokineticins”, in epicardium-derived cells (EPDCs) . Signaling via prokineticin-2 and its receptor, PKR1, is required for cardiomyocyte survival during hypoxic stress. The binding of prokineticin-2 to PKR1 induces proliferation, migration and angiogenesis in endothelial cells. The expression of prokineticin and PKR1 increases during cardiac remodeling after myocardial infarction. Gain of function of PKR1 in the adult mouse heart revealed that cardiomyocyte-PKR1 signaling activates EPDCs in a paracrine fashion, thereby promoting de novo vasculogenesis. Transient PKR1 gene therapy after myocardial infarction in mice decreases mortality and improves heart function by promoting neovascularization, protecting cardiomyocytes and mobilizing WT1 + cells. Furthermore, PKR1 signaling promotes adult EPDC proliferation and differentiation to adopt endothelial and smooth muscle cell fate, for the induction of de novo vasculogenesis. PKR1 is expressed in the proepicardium and epicardial cells derived from mice kidneys. Loss of PKR1 causes deficits in EPDCs in the neonatal mice hearts and kidneys and impairs vascularization and heart and kidney function. Taken together, these data indicate a novel role for PKR1 in heart-kidney complex via EPDCs.

References

[1]  Zimmermann, W.H.; Eschenhagen, T. Questioning the relevance of circulating cardiac progenitor cells in cardiac regeneration. Cardiovasc. Res. 2005, 68, 344–346, doi:10.1016/j.cardiores.2005.09.010.
[2]  Gonzales, C.; Pedrazzini, T. Progenitor cell therapy for heart disease. Exp. Cell. Res. 2009, 315, 3077–3085, doi:10.1016/j.yexcr.2009.09.006.
[3]  Smart, N.; Bollini, S.; Dube, K.N.; Vieira, J.M.; Zhou, B.; Davidson, S.; Yellon, D.; Riegler, J.; Price, A.N.; Lythgoe, M.F.; Pu, W.T.; Riley, P.R. De novo cardiomyocytes from within the activated adult heart after injury. Nature 2011, 474, 640–644, doi:10.1038/nature10188.
[4]  Limana, F.; Capogrossi, M.C.; Germani, A. The epicardium in cardiac repair: from the stem cell view. Pharmacol. Ther. 2011, 129, 82–96, doi:10.1016/j.pharmthera.2010.09.002.
[5]  Limana, F.; Zacheo, A.; Mocini, D.; Mangoni, A.; Borsellino, G.; Diamantini, A.; De Mori, R.; Battistini, L.; Vigna, E.; Santini, M.; Loiaconi, V.; Pompilio, G.; Germani, A.; Capogrossi, M.C. Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circ. Res. 2007, 101, 1255–1265.
[6]  Lepilina, A.; Coon, A.N.; Kikuchi, K.; Holdway, J.E.; Roberts, R.W.; Burns, C.G.; Poss, K.D. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 2006, 127, 607–619.
[7]  Rockman, H.A.; Lefkowitz, R.J. Introduction to the series on novel aspects of cardiovascular G protein-coupled receptor signaling. Circ. Res. 2011, 109, 202–204, doi:10.1161/CIRCRESAHA.110.231126.
[8]  Tang, C.M.; Insel, P.A. GPCR expression in the heart; "new" receptors in myocytes and fibroblasts. Trends Cardiovasc. Med. 2004, 14, 94–99, doi:10.1016/j.tcm.2003.12.007.
[9]  Marinissen, M.J.; Gutkind, J.S. G protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol. Sci. 2001, 22, 368–376, doi:10.1016/S0165-6147(00)01678-3.
[10]  Wettschureck, N.; Rutten, H.; Zywietz, A.; Gehring, D.; Wilkie, T.M.; Chen, J.; Chien, K.R.; Offermanns, S. Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Galphaq/Galpha11 in cardiomyocytes. Nat. Med. 2001, 7, 1236–1240, doi:10.1038/nm1101-1236.
[11]  Nebigil, C.G.; Jaffre, F.; Messaddeq, N.; Hickel, P.; Monassier, L.; Launay, J.M.; Maroteaux, L. Overexpression of the serotonin 5-HT2B receptor in heart leads to abnormal mitochondrial function and cardiac hypertrophy. Circulation 2003, 107, 3223–3229, doi:10.1161/01.CIR.0000074224.57016.01.
[12]  Howes, A.L.; Miyamoto, S.; Adams, J.W.; Woodcock, E.A.; Brown, J.H. Galphaq expression activates EGFR and induces Akt mediated cardiomyocyte survival: dissociation from Galphaq mediated hypertrophy. J. Mol. Cell. Cardiol. 2006, 40, 597–604, doi:10.1016/j.yjmcc.2005.12.003.
[13]  Kaplan, D.D.; Meigs, T.E.; Casey, P.J. Distinct regions of the cadherin cytoplasmic domain are essential for functional interaction with Galpha 12 and beta-catenin. J. Biol. Chem. 2001, 276, 44037–44043, doi:10.1074/jbc.M106121200.
[14]  Offermanns, S.; Mancino, V.; Revel, J.P.; Simon, M.I. Vascular system defects and impaired cell chemokinesis as a result of Galpha13 deficiency. Science 1997, 275, 533–536, doi:10.1126/science.275.5299.533.
[15]  Gaudin, C.; Ishikawa, Y.; Wight, D.C.; Mahdavi, V.; Nadal-Ginard, B.; Wagner, T.E.; Vatner, D.E.; Homcy, C.J. Overexpression of Gs alpha protein in the hearts of transgenic mice. J. Clin. Invest. 1995, 95, 1676–1683, doi:10.1172/JCI117843.
[16]  Smart, N.; Risebro, C.A.; Melville, A.A.; Moses, K.; Schwartz, R.J.; Chien, K.R.; Riley, P.R. Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature 2007, 445, 177–182, doi:10.1038/nature05383.
[17]  Urayama, K.; Guilini, C.; Turkeri, G.; Takir, S.; Kurose, H.; Messaddeq, N.; Dierich, A.; Nebigil, C.G. Prokineticin receptor-1 induces neovascularization and epicardial-derived progenitor cell differentiation. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 841–849, doi:10.1161/ATVBAHA.108.162404.
[18]  Kaser, A.; Winklmayr, M.; Lepperdinger, G.; Kreil, G. The AVIT protein family. Secreted cysteine-rich vertebrate proteins with diverse functions. EMBO Rep. 2003, 4, 469–473, doi:10.1038/sj.embor.embor830.
[19]  Nebigil, C.G. Prokineticin receptors in cardiovascular function: foe or friend? Trends Cardiovasc. Med. 2009, 19, 55–60.
[20]  Li, M.; Bullock, C.M.; Knauer, D.J.; Ehlert, F.J.; Zhou, Q.Y. Identification of two prokineticin cDNAs: recombinant proteins potently contract gastrointestinal smooth muscle. Mol. Pharmacol. 2001, 59, 692–698.
[21]  Masuda, Y.; Takatsu, Y.; Terao, Y.; Kumano, S.; Ishibashi, Y.; Suenaga, M.; Abe, M.; Fukusumi, S.; Watanabe, T.; Shintani, Y.; Yamada, T.; Hinuma, S.; Inatomi, N.; Ohtaki, T.; Onda, H.; Fujino, M. Isolation and identification of EG-VEGF/prokineticins as cognate ligands for two orphan G protein-coupled receptors. Biochem. Biophys. Res. Commun. 2002, 293, 396–402, doi:10.1016/S0006-291X(02)00239-5.
[22]  LeCouter, J.; Lin, R.; Ferrara, N. The role of EG-VEGF in the regulation of angiogenesis in endocrine glands. Cold Spring Harb Symp. Quant. Biol. 2002, 67, 217–221, doi:10.1101/sqb.2002.67.217.
[23]  Chen, J.; Kuei, C.; Sutton, S.; Wilson, S.; Yu, J.; Kamme, F.; Mazur, C.; Lovenberg, T.; Liu, C. Identification and pharmacological characterization of prokineticin 2 beta as a selective ligand for prokineticin receptor 1. Mol. Pharmacol. 2005, 67, 2070–2076, doi:10.1124/mol.105.011619.
[24]  Soga, T.; Matsumoto, S.; Oda, T.; Saito, T.; Hiyama, H.; Takasaki, J.; Kamohara, M.; Ohishi, T.; Matsushime, H.; Furuichi, K. Molecular cloning and characterization of prokineticin receptors. Biochim. Biophys. Acta 2002, 1579, 173–179, doi:10.1016/S0167-4781(02)00546-8.
[25]  Negri, L.; Lattanzi, R.; Giannini, E.; Colucci, M.; Margheriti, F.; Melchiorri, P.; Vellani, V.; Tian, H.; De Felice, M.; Porreca, F. Impaired nociception and inflammatory pain sensation in mice lacking the prokineticin receptor PKR1: focus on interaction between PKR1 and the capsaicin receptor TRPV1 in pain behavior. J. Neurosci. 2006, 26, 6716–6727, doi:10.1523/JNEUROSCI.5403-05.2006.
[26]  Li, J.D.; Hu, W.P.; Boehmer, L.; Cheng, M.Y.; Lee, A.G.; Jilek, A.; Siegel, J.M.; Zhou, Q.Y. Attenuated circadian rhythms in mice lacking the prokineticin 2 gene. J. Neurosci. 2006, 26, 11615–11623, doi:10.1523/JNEUROSCI.3679-06.2006.
[27]  Hu, W.P.; Li, J.D.; Zhang, C.; Boehmer, L.; Siegel, J.M.; Zhou, Q.Y. Altered circadian and homeostatic sleep regulation in prokineticin 2-deficient mice. Sleep 2007, 30, 247–256.
[28]  LeCouter, J.; Ferrara, N. EG-VEGF and the concept of tissue-specific angiogenic growth factors. Semin. Cell. Dev. Biol. 2002, 13, 3–8, doi:10.1006/scdb.2001.0284.
[29]  Ng, K.L.; Li, J.D.; Cheng, M.Y.; Leslie, F.M.; Lee, A.G.; Zhou, Q.Y. Dependence of olfactory bulb neurogenesis on prokineticin 2 signaling. Science 2005, 308, 1923–1927, doi:10.1126/science.1112103.
[30]  LeCouter, J.; Zlot, C.; Tejada, M.; Peale, F.; Ferrara, N. Bv8 and endocrine gland-derived vascular endothelial growth factor stimulate hematopoiesis and hematopoietic cell mobilization. Proc. Natl. Acad. Sci. USA 2004, 101, 16813–16818.
[31]  Negri, L.; Lattanzi, R.; Giannini, E.; De Felice, M.; Colucci, A.; Melchiorri, P. Bv8, the amphibian homologue of the mammalian prokineticins, modulates ingestive behaviour in rats. Br. J. Pharmacol. 2004, 142, 181–191, doi:10.1038/sj.bjp.0705686.
[32]  Li, J.D.; Hu, W.P.; Zhou, Q.Y. Disruption of the circadian output molecule prokineticin 2 results in anxiolytic and antidepressant-like effects in mice. Neuropsychopharmacology 2009, 34, 367–373, doi:10.1038/npp.2008.61.
[33]  Guilini, C.; Urayama, K.; Turkeri, G.; Dedeoglu, D.B.; Kurose, H.; Messaddeq, N.; Nebigil, C.G. Divergent roles of prokineticin receptors in the endothelial cells: Angiogenesis and fenestration. Am. J. Physiol. Heart Circ. Physiol. 2010, 298, H844–H852, doi:10.1152/ajpheart.00898.2009.
[34]  Ngan, E.S.; Lee, K.Y.; Sit, F.Y.; Poon, H.C.; Chan, J.K.; Sham, M.H.; Lui, V.C.; Tam, P.K. Prokineticin-1 modulates proliferation and differentiation of enteric neural crest cells. Biochim. Biophys. Acta 2007, 1773, 536–545, doi:10.1016/j.bbamcr.2007.01.013.
[35]  Giannini, E.; Lattanzi, R.; Nicotra, A.; Campese, A.F.; Grazioli, P.; Screpanti, I.; Balboni, G.; Salvadori, S.; Sacerdote, P.; Negri, L. The chemokine Bv8/prokineticin 2 is up-regulated in inflammatory granulocytes and modulates inflammatory pain. Proc. Natl. Acad. Sci. USA 2009, 106, 14646–14651, doi:10.1073/pnas.0903720106.
[36]  Dorsch, M.; Qiu, Y.; Soler, D.; Frank, N.; Duong, T.; Goodearl, A.; O'Neil, S.; Lora, J.; Fraser, C.C. PK1/EG-VEGF induces monocyte differentiation and activation. J. Leukoc. Biol. 2005, 78, 426–434, doi:10.1189/jlb.0205061.
[37]  Ngan, E.S.; Tam, P.K. Prokineticin-signaling pathway. Int. J. Biochem. Cell Biol. 2008, 40, 1679–1684, doi:10.1016/j.biocel.2008.03.010.
[38]  Urayama, K.; Guilini, C.; Messaddeq, N.; Hu, K.; Steenman, M.; Kurose, H.; Ert, G.; Nebigil, C.G. The prokineticin receptor-1 (GPR73) promotes cardiomyocyte survival and angiogenesis. FASEB J. 2007, 21, 2980–2993, doi:10.1096/fj.07-8116com.
[39]  Martucci, C.; Franchi, S.; Giannini, E.; Tian, H.; Melchiorri, P.; Negri, L.; Sacerdote, P. Bv8, the amphibian homologue of the mammalian prokineticins, induces a proinflammatory phenotype of mouse macrophages. Br. J. Pharmacol. 2006, 147, 225–234, doi:10.1038/sj.bjp.0706467.
[40]  Essafi, A.; Webb, A.; Berry, R.L.; Slight, J.; Burn, S.F.; Spraggon, L.; Velecela, V.; Martinez-Estrada, O.M.; Wiltshire, J.H.; Roberts, S.G.; Brownstein, D.; Davies, J.A.; Hastie, N.D.; Hohenstein, P. A wt1-controlled chromatin switching mechanism underpins tissue-specific wnt4 activation and repression. Dev. Cell 2011, 21, 559–574, doi:10.1016/j.devcel.2011.07.014.
[41]  Acharya, A.; Baek, S.T.; Banfi, S.; Eskiocak, B.; Tallquist, M.D. Efficient inducible Cre-mediated recombination in Tcf21 cell lineages in the heart and kidney. Genesis 2011, 49, 870–877, doi:10.1002/dvg.20750.
[42]  Robb, L.; Mifsud, L.; Hartley, L.; Biben, C.; Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A.; Harvey, R.P. Epicardin: A novel basic helix-loop-helix transcription factor gene expressed in epicardium, branchial arch myoblasts, and mesenchyme of developing lung, gut, kidney, and gonads. Dev. Dyn. 1998, 213, 105–113, doi:10.1002/(SICI)1097-0177(199809)213:1<105::AID-AJA10>3.0.CO;2-1.
[43]  Wagner, N.; Morrison, H.; Pagnotta, S.; Michiels, J.F.; Schwab, Y.; Tryggvason, K.; Schedl, A.; Wagner, K.D. The podocyte protein nephrin is required for cardiac vessel formation. Hum. Mol. Genet. 2011, 20, 2182–2194, doi:10.1093/hmg/ddr106.
[44]  Airik, R.; Bussen, M.; Singh, M.K.; Petry, M.; Kispert, A. Tbx18 regulates the development of the ureteral mesenchyme. J. Clin. Invest. 2006, 116, 663–674, doi:10.1172/JCI26027.
[45]  Christoffels, V.M.; Grieskamp, T.; Norden, J.; Mommersteeg, M.T.; Rudat, C.; Kispert, A. Tbx18 and the fate of epicardial progenitors. Nature 2009, 458, E8–E9; Discussion E9–E10, doi:10.1038/nature07916.
[46]  Martinez-Estrada, O.M.; Lettice, L.A.; Essafi, A.; Guadix, J.A.; Slight, J.; Velecela, V.; Hall, E.; Reichmann, J.; Devenney, P.S.; Hohenstein, P.; Hosen, N.; Hill, R.E.; Munoz-Chapuli, R.; Hastie, N.D. Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin. Nat. Genet. 2010, 42, 89–93.
[47]  Hohenstein, B.; Hausknecht, B.; Boehmer, K.; Riess, R.; Brekken, R.A.; Hugo, C.P. Local VEGF activity but not VEGF expression is tightly regulated during diabetic nephropathy in man. Kidney Int. 2006, 69, 1654–1661, doi:10.1038/sj.ki.5000294.
[48]  Suri, M.; Kelehan, P.; O'Neill, D.; Vadeyar, S.; Grant, J.; Ahmed, S.F.; Tolmie, J.; McCann, E.; Lam, W.; Smith, S.; Fitzpatrick, D.; Hastie, N.D.; Reardon, W. WT1 mutations in Meacham syndrome suggest a coelomic mesothelial origin of the cardiac and diaphragmatic malformations. Am. J. Med. Genet. A 2007, 143A, 2312–2320, doi:10.1002/ajmg.a.31924.
[49]  Perez-Pomares, J.M.; Carmona, R.; Gonzalez-Iriarte, M.; Atencia, G.; Wessels, A.; Munoz-Chapuli, R. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int J. Dev. Biol. 2002, 46, 1005–1013.
[50]  Pombal, M.A.; Carmona, R.; Megias, M.; Ruiz, A.; Perez-Pomares, J.M.; Munoz-Chapuli, R. Epicardial development in lamprey supports an evolutionary origin of the vertebrate epicardium from an ancestral pronephric external glomerulus. Evol. Dev. 2008, 10, 210–216, doi:10.1111/j.1525-142X.2008.00228.x.
[51]  Boulberdaa, M.; Turkeri, G.; Urayama, K.; Dormishian, M.; Szatkowski, C.; Zimmer, L.; Messaddeq, N.; Laugel, V.; Dolle, P.; Nebigil, C.G. Genetic inactivation of prokineticin receptor-1 leads to heart and kidney disorders. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 842–850, doi:10.1161/ATVBAHA.110.222323.
[52]  Boulberdaa, M.; Urayama, K.; Nebigil, C.G. Prokineticin receptor 1 (PKR1) signalling in cardiovascular and kidney functions. Cardiovasc. Res. 2011, 92, 191–198, doi:10.1093/cvr/cvr228.
[53]  Noguchi, H.; Ueda, M.; Matsumoto, S.; Kobayashi, N.; Hayashi, S. BETA2/NeuroD protein transduction requires cell surface heparan sulfate proteoglycans. Hum. Gene Ther 2007, 18, 10–17, doi:10.1089/hum.2006.118.
[54]  Zhou, B.; Ma, Q.; Rajagopal, S.; Wu, S.M.; Domian, I.; Rivera-Feliciano, J.; Jiang, D.; von Gise, A.; Ikeda, S.; Chien, K.R.; Pu, W.T. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 2008, 454, 109–113, doi:10.1038/nature07060.
[55]  Cai, C.L.; Martin, J.C.; Sun, Y.; Cui, L.; Wang, L.; Ouyang, K.; Yang, L.; Bu, L.; Liang, X.; Zhang, X.; Stallcup, W.B.; Denton, C.P.; McCulloch, A.; Chen, J.; Evans, S.M. A myocardial lineage derives from Tbx18 epicardial cells. Nature 2008, 454, 104–108, doi:10.1038/nature06969.
[56]  Acharya, A.; Baek, S.T.; Huang, G.; Eskiocak, B.; Goetsch, S.; Sung, C.Y.; Banfi, S.; Sauer, M.F.; Olsen, G.S.; Duffield, J.S.; Olson, E.N.; Tallquist, M.D. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development 2012, 139, 2139–2149, doi:10.1242/dev.079970.
[57]  Kikuchi, K.; Gupta, V.; Wang, J.; Holdway, J.E.; Wills, A.A.; Fang, Y.; Poss, K.D. tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 2011, 138, 2895–2902, doi:10.1242/dev.067041.
[58]  Katz, T.C.; Singh, M.K.; Degenhardt, K.; Rivera-Feliciano, J.; Johnson, R.L.; Epstein, J.A.; Tabin, C.J. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev. Cell. 2012, 22, 639–650, doi:10.1016/j.devcel.2012.01.012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133