全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases

DOI: 10.1186/1471-2105-13-6

Full-Text   Cite this paper   Add to My Lib

Abstract:

MetRxn is a knowledgebase that includes standardized metabolite and reaction descriptions by integrating information from BRENDA, KEGG, MetaCyc, Reactome.org and 44 metabolic models into a single unified data set. All metabolite entries have matched synonyms, resolved protonation states, and are linked to unique structures. All reaction entries are elementally and charge balanced. This is accomplished through the use of a workflow of lexicographic, phonetic, and structural comparison algorithms. MetRxn allows for the download of standardized versions of existing genome-scale metabolic models and the use of metabolic information for the rapid reconstruction of new ones.The standardization in description allows for the direct comparison of the metabolite and reaction content between metabolic models and databases and the exhaustive prospecting of pathways for biotechnological production. This ever-growing dataset currently consists of over 76,000 metabolites participating in more than 72,000 reactions (including unresolved entries). MetRxn is hosted on a web-based platform that uses relational database models (MySQL).The ever accelerating pace of DNA sequencing and annotation information generation [1] is spearheading the global inventorying of metabolic functions across all kingdoms of life. Increasingly, metabolite and reaction information is organized in the form of community [2], organism, or even tissue-specific genome-scale metabolic reconstructions. These reconstructions account for reaction stoichiometry and directionality, gene to protein to reaction associations, organelle reaction localization, transporter information, transcriptional regulation and biomass composition. Already over 75 genome-scale models are in place for eukaryotic, prokaryotic and archaeal species [3] and are becoming indispensable for computationally driving engineering interventions in microbial strains for targeted overproductions [4-7], elucidating the organizing principles of metabol

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133