全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Robotics  2013 

Sensor-Based Trajectory Generation for Advanced Driver Assistance System

DOI: 10.3390/robotics2010019

Keywords: advanced driver assistance systems, trajectory generation, intelligent vehicles, path planning, visibility graphs

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper investigates the trajectory generation problem for an advanced driver assistance system that could sense the driving state of the vehicle, so that a collision free trajectory can be generated safely. Specifically, the problem of trajectory generation is solved for the safety assessment of the driving state and to manipulate the vehicle in order to avoid any possible collisions. The vehicle senses the environment so as to obtain information about other vehicles and static obstacles ahead. Vehicles may share the perception of the environment via an inter-vehicle communication system. The planning algorithm is based on a visibility graph. A lateral repulsive potential is applied to adaptively maintain a trade-off between the trajectory length and vehicle clearance, which is the greatest problem associated with visibility graphs. As opposed to adaptive roadmap approaches, the algorithm exploits the structured nature of the environment for construction of the roadmap. Furthermore, the mostly organized nature of traffic systems is exploited to obtain orientation invariance, which is another limitation of both visibility graphs and adaptive roadmaps. Simulation results show that the algorithm can successfully solve the problem for a variety of commonly found scenarios.

References

[1]  Hummel, T.; Kühn, M.; Bende, J.; Lang, A. Advanced Driver Assistance Systems: An Investigation of Their Potential Safety Benefits Based on an Analysis of Insurance Claims In Germany; Research report FS 03; German Insurance Association (GDV): Berlin, Germany, 2011.
[2]  Gerónimo, D.; López, A.M.; Sappa, A.D.; Graf, T. Survey of pedestrian detection for advanced driver assistance systems. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1239–1258, doi:10.1109/TPAMI.2009.122.
[3]  Sarshar, M. A Novel System for Advanced Driver Assistance Systems. In Proceedings of the 4th Annual IEEE Systems Conference, San Diego, CA, USA, April 2010; pp. 529–534.
[4]  Trivedi, M.M.; Cheng, S.Y. Holistic sensing and active displays for intelligent driver support systems. Computer 2007, 40, 60–68, doi:10.1109/MC.2007.170.
[5]  Trivedi, M.M.; Gandhi, T.; McCall, J. Looking-in and looking-out of a vehicle: Computer-vision-based enhanced vehicle safety. IEEE Trans. Intell. Transport. Syst. 2007, 8, 108–120, doi:10.1109/TITS.2006.889442.
[6]  Cellario, M. Human-centered intelligent vehicles: Toward multimodal interface integration. IEEE Intell. Syst. 2001, 16, 78–81, doi:10.1109/5254.941364.
[7]  Hannan, M.A.; Hussain, A.; Samad, S.A. Sensing systems and algorithms for airbag deployment decision. Sensors 2011, 11, 888–890.
[8]  Parasuraman, R.; Hancock, P.A.; Olofinboba, O. Alarm effectiveness in driver-centred collision-warning systems. Ergonomics 1997, 40, 390–399, doi:10.1080/001401397188224.
[9]  Stein, G.P.; Mano, O.; Shashua, A. Vision-Based ACC with a Single Camera: Bounds on Range and Range Rate Accuracy. In Proceedings of the IEEE Intelligent Vehicles Symposium, Columbus, OH, USA, 9–11 June 2003; pp. 120–125.
[10]  Schlegl, T.; Bretterklieber, T.; Neumayer, M.; Zangl, H. Combined capacitive and ultrasonic distance measurement for automotive applications. Sensors 2011, 11, 2636–2642, doi:10.1109/JSEN.2011.2155056.
[11]  Dams, M.; Winner, H. A Modular System Architecture for Sensor Data Processing of ADAS Applications. In Proceedings of the IEEE Intelligent Vehicles Symposium, Las Vegas, NV, USA, 6–8 June 2005; pp. 729–734.
[12]  Tsugawa, S. Inter-Vehicle Communications and Their Applications to Intelligent Vehicles: An Overview. In Proceedings of the IEEE Intelligent Vehicle Symposium, Versailles, France, 17–21 June 2002; pp. 564–569.
[13]  Reichardt, D.; Miglietta, M.; Moretti, L.; Morsink, P.; Schulz, W. CarTALK 2000: Safe and Comfortable Driving Based upon Inter-Vehicle-Communication. In Proceedings of the IEEE Intelligent Vehicle Symposium, Versailles, France, 17–21 June 2002; pp. 545–550.
[14]  Khatib, O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. In Proceedings of the 1985 IEEE International Conference on Robotics and Automation, St. Louis, MO, USA, March 1985; pp. 500–505.
[15]  Stentz, A. Optimal and Efficient Path Planning for Partially-Known Environments. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, USA, 8–13 May 1994; pp. 3310–3317.
[16]  Choset, H.; Burdick, J. Sensor Based Planning. I. The Generalized Voronoi Graph. In Proceedings of the 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan, 21–27 May 1995; pp. 1649–1655.
[17]  Fiorini, P.; Shiller, Z. Motion Planning in Dynamic Environments Using Velocity Obstacles. Int. J. Roboti. Res. 1998, 17, 760–772, doi:10.1177/027836499801700706.
[18]  Wesley, M.A.; Lozano-Pérez, T. An algorithm for planning collision-free paths among polyhedral obstacles. Comm. ACM 1979, 22, 560–570, doi:10.1145/359156.359164.
[19]  Oommen, B.; Iyengar, S.; Rao, N.; Kashyap, R. Robot navigation in unknown terrains using learned visibility graphs. Part I: The disjoint convex obstacle case. IEEE J. Robot. Autom. 1987, 3, 672–681, doi:10.1109/JRA.1987.1087133.
[20]  Keller, C.G.; Dang, T.; Fritz, H.; Joos, A.; Rabe, C.; Gavrila, D.M. Active pedestrian safety by automatic braking and evasive steering. IEEE Trans. Intell. Transport. Syst. 2011, 12, 1292–1304, doi:10.1109/TITS.2011.2158424.
[21]  Jensen, M.J.; Tolbert, A.M.; Wagner, J.R.; Member, S.; Switzer, F.S.; Finn, J.W. A customizable automotive steering system with a Haptic feedback control strategy for obstacle avoidance notification. IEEE Trans. Veh. Tech. 2011, 60, 4208–4216, doi:10.1109/TVT.2011.2172472.
[22]  Mulder, M.; Abbink, D.A.; van Paassen, M.M.; Mulder, M. Design of a Haptic gas pedal for active car-following support. IEEE Trans. Intell. Transport. Syst. 2011, 12, 268–279, doi:10.1109/TITS.2010.2091407.
[23]  Kavraki, L.E.; Kolountzakis, M.N.; Latombe, J.C. Analysis of probabilistic roadmaps for path planning. IEEE Trans. Robot. Autom. 1998, 14, 166–171, doi:10.1109/70.660866.
[24]  Kavraki, L.E.; Svestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in highdimensional configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580, doi:10.1109/70.508439.
[25]  Gayle, R.; Sud, A.; Lin, M.C.; Manocha, D. Reactive Deformation Roadmaps: Motion Planning of Multiple Robots in Dynamic Environments. In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 3777–3783.
[26]  Quinlan, S.; Khatib, O. Elastic Bands: Connecting Path Planning and Control. In Proceedings of the 1993 IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; pp. 802–807.
[27]  Anderson, S.J.; Karumanchi, S.B.; Iagnemma, K. Constraint-Based Planning and Control for Safe, Semi-Autonomous Operation of Vehicles. In Proceedings of the 2012 IEEE Intelligent Vehicles Symposium, Madrid, Spain, 3–7 June 2012; pp. 383–388.
[28]  Kala, R.; Warwick, K. Multi-vehicle planning using RRT-connect. Paladyn J. Behav. Robot. 2012, 2, 134–144, doi:10.2478/s13230-012-0004-5.
[29]  Kala, R.; Warwick, K. Planning of Multiple Autonomous Vehicles Using RRT. In Proceedings of the 10th IEEE International Conference on Cybernetic Intelligent Systems, London, UK, September 2011; pp. 20–25.
[30]  Kuwata, Y.; Karaman, S.; Teo, J.; Frazzoli, E.; How, J.P.; Fiore, G. Real-time motion planning with applications to autonomous urban driving. IEEE Trans. Contr. Syst. Tech. 2009, 17, 1105–1118, doi:10.1109/TCST.2008.2012116.
[31]  Schubert, R.; Schulze, K.; Wanielik, G. Situation assessment for automatic lane-change maneuvers. IEEE Trans. Intell. Transport. Syst. 2010, 11, 607–616, doi:10.1109/TITS.2010.2049353.
[32]  Hegeman, G.; Tapani, A.; Hoogendoorn, S. Overtaking assistant assessment using traffic simulation. Transport. Res. C 2009, 17, 617–630, doi:10.1016/j.trc.2009.04.010.
[33]  Naranjo, J.E.; González, C.; García, R.; de Pedro, T. Lane-change fuzzy control in autonomous vehicles for the overtaking maneuver. IEEE Trans. Intell. Transport. Syst. 2008, 9, 438–450, doi:10.1109/TITS.2008.922880.
[34]  Gayle, R.; Moss, W.; Lin, M.C.; Manocha, D. Multi-Robot Coordination Using Generalized Social Potential Fields. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 106–113.
[35]  Gayle, R.; Manocha, D. Navigating Virtual Agents in Online Virtual Worlds. In Proceedings of the 13th International Symposium on 3D Web Technology, Los Angeles, CA, USA, April 2008; ACM: New York, NY, USA; pp. 53–56.
[36]  Kala, R.; Shukla, A.; Tiwari, R. Robotic path planning in static environment using hierarchical multi-neuron heuristic search and probability based fitness. Neurocomputing 2011, 74, 2314–2335, doi:10.1016/j.neucom.2011.03.006.
[37]  Kala, R.; Warwick, K. Multi-level planning for semi-autonomous vehicles in traffic scenarios based on separation maximization. J. Intell. Robotic Syst. 2013, doi:10.1007/s10846-013-9817-7.
[38]  Cagigas, D.; Abascal, J. A hierarchical extension of the D* algorithm. J. Intell. Robotic Syst. 2005, 42, 393–413, doi:10.1007/s10846-005-2962-x.
[39]  Kala, R.; Warwick, K. Motion planning of autonomous vehicles in a non-autonomous vehicle environment without speed lanes. Eng. Appl. Artif. Intell. 2013, doi:10.1016/j.engappai.2013.02.001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133