|
BMC Bioinformatics 2005
Internet-based profiler system as integrative framework to support translational researchAbstract: The generic design of this system makes it compatible with multiple organ system (e.g., prostate, breast, lung, renal, and hematopoietic system,). Studies and folders are restricted to authorized users as required. Over the past 5 years, investigators at 2 academic institutions have scanned 656 TMA experiments and collected 63,311 digital images of these tissue samples. 68 pathologists from 12 major user groups have accessed the system. Two groups directly link clinical data from over 500 patients for immediate access and the remaining groups choose to maintain clinical and pathology data on separate systems. Profiler currently has 170 K data points such as staining intensity, tumor grade, and nuclear size. Due to the relational database structure, analysis can be easily performed on single or multiple TMA experimental results. The TMA module of Profiler can maintain images acquired from multiple systems.We have developed a robust process to develop molecular biomarkers using TMA technology and an internet-based database system to track all steps of this process. This system is extendable to other types of molecular data as separate modules and is freely available to academic institutions for licensing.Taking laboratory discoveries and translating them into clinically useful diagnostic tests or targeted therapies requires the use of human samples for validation. This process, referred to as translational research, requires carefully storing and maintaining detailed annotation of these samples. Tissue Microarray (TMA) technology has created and efficient manner to accelerate discovery but has also created a new demand for databases to handle a large number of data points in a regulatory compliant manner.The initial description of Tissue Microarray (TMA) technology by Kononen et al. [1] began a revolutionary change in the way that many tissue based research studies would be performed. TMA technology allows for the precise placement of typically up to 400–800 tissue sa
|