全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Histological analysis of the effects of a static magnetic field on bone healing process in rat femurs

DOI: 10.1186/1746-160x-2-43

Full-Text   Cite this paper   Add to My Lib

Abstract:

A metallic device was developed, consisting of two stainless steel washers attached to the bone structure with titanium screws. Twenty-one Wistar rats (Rattus novergicus albinus) were used in this randomized experimental study. Each experimental group had five rats, and two animals were included as control for each of the groups. A pair of metal device was attached to the left femur of each animal, lightly touching a surgically created bone cavity. In the experimental groups, washers were placed in that way that they allowed mutual attraction forces. In the control group, surgery was performed but washers, screws or instruments were not magnetized. The animals were sacrificed 15, 45 and 60 days later, and the samples were submitted to histological analysis.On days 15 and 45 after the surgical procedure, bone healing was more effective in the experimental group as compared to control animals. Sixty days after the surgical procedure, marked bone neoformation was observed in the test group, suggesting the existence of continued magnetic stimulation during the experiment.The magnetic stainless steel device, buried in the bone, in vivo, resulted in increased efficiency of the experimental bone healing process.Bone neoformation is of primary importance for the success of dental clinical-surgical treatments. Much attention has been given to the research of new strategies to improve oral maxillofacial surgical techniques, as well as on the knowledge and application of biomaterials [1] an their possible chemical and physical consequences on the patients.Electromagnetic fields have been used for the stimulation of bone neoformation processes. Their effects are observed in the treatment of osteoporosis, osteonecrosis, osteotomized areas, integration of bone grafts and post-traumatic pseudarthrosis [2]. Several cell functions were also shown to be influenced by electromagnetic fields [3,4]. Electromagnetism affects osteogenesis through mechanisms such as neovascularization, col

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133