|
Review and standardization of cell phone exposure calculations using the SAM phantom and anatomically correct head modelsAbstract: Cell phone safety remains a topic of broad public concern that attracts frequent media attention. This attention is focused on two areas of scientific controversy concerning cell phone safety. The first area is that of non-thermal biological effects. The existence of these effects is an important open question, but it is not the topic of this paper. However, if these effects exist, their manifestation will certainly be related to the amount of RF energy deposited in the tissue – RF dosimetry [1]. The second area of controversy, and the topic of this paper, is that of RF dosimetry, specifically computational RF dosimetry. Simply put, this is a computer simulation that estimates the deposition of RF energy, the specific absorption rate (SAR), in the head of a user. Because live human heads can not be safely instrumented for these measurements, computational RF dosimetry provides the best estimate of SAR in actual human heads. For this same reason, compliance testing is done with phantom heads.The phantom head that is now the world-wide standard for compliance testing is the Specific Anthropomorphic Mannequin (SAM). SAM was developed by members of IEEE Standards Coordinating Committee 34, SubCommittee 2, Working Group 1 (SCC34/SC2/WG1). This working group was created to develop recommended practices for determining SAR in the head via measurement techniques [2]. SAM has also been adopted by the European Committee for Electrical Standardization (CENELEC) [3], the International Electrotechnical Commission [4], Association of Radio Industries and Businesses [5], and Federal Communications Commission [6].SAM is a lossless plastic shell and ear spacer. Because current technology does not allow reliable measurement of SAR in small complex structures, like a simulated pinna, SCC34/SC2 chose to use a lossless ear spacer on SAM to maximize the energy reaching the head and minimize measurement uncertainty. SAM's dimensions were taken from the 90th-percentile anthropometric data
|