|
Genome Medicine 2012
Metabolomic analysis of rat serum in streptozotocin-induced diabetes and after treatment with oral triethylenetetramine (TETA)DOI: 10.1186/gm334 Abstract: Here we have performed two independent metabolomic studies of serum to assess the suitability of the streptozotocin (STZ)-induced rat model for studying diabetes and to define metabolite-related changes associated with TETA treatment. Ultraperformance liquid chromatography-mass spectrometry studies of serum from non-diabetic/untreated, non-diabetic/TETA-treated, STZ-induced diabetic/untreated and STZ-induced diabetic/TETA-treated rats were performed followed by univariate and multivariate analysis of data.Multiple metabolic changes related to STZ-induced diabetes, some of which have been reported previously in other animal and human studies, were observed, including changes in amino acid, fatty acid, glycerophospholipid and bile acid metabolism. Correlation analysis suggested that treatment with TETA led to a reversal of diabetes-associated changes in bile acid, fatty acid, steroid, sphingolipid and glycerophospholipid metabolism and proteolysis.Metabolomic studies have shown that the STZ-induced rat model of diabetes is an appropriate model system to undertake research into diabetes and potential therapies as several metabolic changes observed in humans and other animal models were also observed in this study. Metabolomics has also identified several biological processes and metabolic pathways implicated in diabetic complications and reversed following treatment with the experimental therapeutic TETA.Diabetes mellitus (DM) is a chronic debilitating condition that is rapidly increasing in prevalence worldwide, as a consequence of increases in obesity, changing patterns of diet and physical activity, and ageing populations. The World Health Organization estimated that 154 million people in the world had DM at the beginning of the 21st century [1]. In the USA the prevalence is estimated to increase from 4.0 to 7.2% (or 29 million) between 2000 and 2050 [2].DM is a metabolic disorder characterized by hyperglycemia. The hyperglycemia is caused as a consequence of a defi
|