全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Antioxidant defense system and family environment in adolescents with family history of psychosis

DOI: 10.1186/1471-244x-12-200

Keywords: Oxidative stress, Family environment, Psychosis, Schizophrenia, Antioxidant enzymes, Unaffected siblings

Full-Text   Cite this paper   Add to My Lib

Abstract:

We included 82 HC and 14 HC-FHP aged between 9 and 17 years. Total antioxidant status, lipid peroxidation, antioxidant enzyme activities and glutathione levels were determined in blood samples.There was a significant decrease in the total antioxidant level in the HC-FHP group compared with the HC group (OR = 2.94; p = 0.009), but no between-group differences in the Global Assessment of Functioning (GAF) scale scores. For the FES, the HC-FHP group had significantly higher scores in the cohesion (p = 0.007) and intellectual-cultural dimensions (p=0.025). After adjusting for these two FES dimensions, total antioxidant status remained significantly different between groups (OR = 10.86, p = 0.009).Although causal relationships cannot be assumed, we can state that family environment is not playing a role in inducing oxidative stress in these healthy subjects. It could be hypothesized that families with affected relatives protect themselves from psychosis with positive environmental factors such as cohesion and intellectual-cultural activities.There is abundant evidence that free radicals play an important role in membrane pathology in the central nervous system (CNS) and, although they may not be the main contributory factor, free radicals may be involved in physiopathology of many diseases including schizophrenia [1-5].Oxidative stress is characterised by an imbalance between oxidant molecules and antioxidant defence. Several studies suggest that the brain may be particularly vulnerable to oxidative stress [6-9]. The brain accounts for only 2% of the body weight but consumes 20% of the inspired oxygen, and its membranes are especially sensitive to oxidative damage because of their high content of polyunsaturated fatty acids.It is difficult to determine the levels of free radicals in vivo because of their short half-life, but oxidative stress can be investigated indirectly by measuring the antioxidant defence system. The primary antioxidant cellular defence is enzymatic a

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133