|
Genome Biology 2006
Patterns of sequence conservation in presynaptic neural genesDOI: 10.1186/gb-2006-7-11-r105 Abstract: Evolutionary rate analysis revealed that presynaptic proteins evolve slowly, although some members of large gene families exhibit accelerated evolutionary rates relative to other family members. Comparative sequence analysis of 46 megabases spanning 150 presynaptic genes identified more than 26,000 elements that are highly conserved in eight vertebrate species, as well as a small subset of sequences (6%) that are shared among unrelated presynaptic genes. Analysis of large gene families revealed that upstream and intronic regions of closely related family members are extremely divergent. We also identified 504 exceptionally long conserved elements (≥360 base pairs, ≥80% pair-wise identity between human and other mammals) in intergenic and intronic regions of presynaptic genes. Many of these elements form a highly stable stem-loop RNA structure and consequently are candidates for novel regulatory elements, whereas some conserved noncoding elements are shown to correlate with specific gene expression profiles. The SynapseDB online database integrates these findings and other functional genomic resources for synaptic genes.Highly conserved elements in nonprotein coding regions of 150 presynaptic genes represent sequences that may be involved in the transcriptional or post-transcriptional regulation of these genes. Furthermore, comparative sequence analysis will facilitate selection of genes and noncoding sequences for future functional studies and analysis of variation studies in neurodevelopmental and psychiatric disorders.The neuronal synapse is composed of presynaptic and postsynaptic components, and communication across these components is mediated by the release of neurotransmitters from synaptic vesicles. This process is initiated in the presynaptic terminal when an action potential opens voltage-gated Ca2+ channels and a Ca2+ influx triggers intracellular membrane fusion between the synaptic vesicles and plasma membrane. Before fusion, synaptic vesicles are targe
|