|
BMC Plant Biology 2007
Differential gene expression in an elite hybrid rice cultivar (Oryza sativa, L) and its parental lines based on SAGE dataAbstract: By using an improved strategy of tag-to-gene mapping and two recently annotated genome assemblies (93-11 and PA64s), we identified 10,268 additional high-quality tags, reaching a grand total of 20,595 together with our previous result. We further detected 8.5% and 5.9% physically-mapped genes that are differentially-expressed among the triad (in at least one of the three stages) with P-values less than 0.05 and 0.01, respectively. These genes distributed in 12 major gene expression patterns; among them, 406 up-regulated and 469 down-regulated genes (P < 0.05) were observed. Functional annotations on the identified genes highlighted the conclusion that up-regulated genes (some of them are known enzymes) in hybrid are mostly related to enhancing carbon assimilation in leaves and roots. In addition, we detected a group of up-regulated genes related to male sterility and 442 down-regulated genes related to signal transduction and protein processing, which may be responsible for rice heterosis.We improved tag-to-gene mapping strategy by combining information from transcript sequences and rice genome annotation, and obtained a more comprehensive view on genes that related to rice heterosis. The candidates for heterosis-related genes among different genotypes provided new avenue for exploring the molecular mechanism underlying heterosis.Heterosis is defined as advantageous quantitative and qualitative traits of offspring over their parents, and the utilization of heterosis principles has been a major practice for increasing productivity of plants and animals [1]. A considerable amount of efforts have been invested in unraveling genetic basis of heterosis in rice (Oryza sativa, L) and it was explained mainly by mechanisms such as dominance [2] and epistasis [3]. Although many investigators favored one hypothesis over another, biological mechanisms of rice heterosis may not be fully characterized based on genetic approaches alone, especially based on classical genetic concep
|