|
BMC Plant Biology 2007
Evolutionary conservation of plant gibberellin signalling pathway componentsAbstract: Arabidopsis sequences of the gibberellin signalling compounds were used to screen databases from a variety of plants, including protists, for homologues, providing indications for the degree of conservation of the pathway. The pathway as such appears completely absent in protists, the moss Physcomitrella patens shares only a limited homology with the Arabidopsis proteins, thus lacking essential characteristics of the classical GA signalling pathway, while the lycophyte Selaginella moellendorffii contains a possible ortholog for each component. The occurrence of classical GA responses can as yet not be linked with the presence of homologues of the signalling pathway. Alignments and display in neighbour joining trees of the GA signalling components confirm the close relationship of gymnosperms, monocotyledonous and dicotyledonous plants, as suggested from previous studies.Homologues of the GA-signalling pathway were mainly found in vascular plants. The GA signalling system may have its evolutionary molecular onset in Physcomitrella patens, where GAs at higher concentrations affect gravitropism and elongation growth.Gibberellins (GAs) are a large family of hormones that are important for a vast array of responses throughout the life cycle of plants. They mainly stimulate germination, cause cell expansion, and regulate flowering time. Due to their high economical relevance, the effects of GAs on cell elongation are subject to intense scientific studies. The green revolution was based on selection for dwarfism in rice and wheat cultivars. Recently it was shown that these dwarfing genes interfere with either the production or the action of GAs [1]. Chemical interference with GA biosynthesis is often used to limit the growth of plants, including trees [2]. GAs were first isolated from Gibberella (Fusarium) fujikuroi [3]. This fungus causes extreme extension growth in rice, named bakanae or "foolish" rice, which hence is far more susceptible to lodging.Apart from Gibberella
|