|
BMC Plant Biology 2007
EDR2 negatively regulates salicylic acid-based defenses and cell death during powdery mildew infections of Arabidopsis thalianaAbstract: We isolated the edr2-6 mutant, an allele of the previously described edr2 mutants. We found that edr2-6 exhibited an exaggerated chlorosis and necrosis response to attack by three pathogens, two powdery mildew and one downy mildew species, but not in response to abiotic stresses or attack by the bacterial leaf speck pathogen. The chlorosis and necrosis did not spread beyond inoculated sites suggesting that EDR2 limits the initiation of cell death rather than its spread. The pathogen-induced chlorosis and necrosis of edr2-6 was correlated with a stimulation of the salicylic acid defense pathway and was suppressed in mutants deficient in salicylic acid signaling. EDR2 encodes a novel protein with a pleckstrin homology and a StAR transfer (START) domain as well as a plant-specific domain of unknown function, DUF1336. The pleckstrin homology domain binds to phosphatidylinositol-4-phosphate in vitro and an EDR2:HA:GFP protein localizes to endoplasmic reticulum, plasma membrane and endosomes.EDR2 acts as a negative regulator of cell death, specifically the cell death elicited by pathogen attack and mediated by the salicylic acid defense pathway. Phosphatidylinositol-4-phosphate may have a role in limiting cell death via its effect on EDR2. This role in cell death may be indirect, by helping to target EDR2 to the appropriate membrane, or it may play a more direct role.The hypersensitive necrosis response (HR) elicited by incompatible plant-pathogen interactions is thought to be a form of programmed cell death. Several of the features diagnostic for programmed cell death, such as nuclear condensation, DNA fragmentation and cytoplast shrinkage have been observed in plants cells undergoing HR [1].Searches of sequenced plant genomes for plant orthologs of animal programmed cell death genes have identified only one gene that resembles its animal counterpart, the BAX INHIBITOR 1 gene, suggesting that components of the regulation and execution of programmed cell death differ subs
|