|
Disruption of rhythms of molecular clocks in primary synovial fibroblasts of patients with osteoarthritis and rheumatoid arthritis, role of IL-1β/TNFDOI: 10.1186/ar3852 Abstract: The presence of BMAL-1, CLOCK, Period 1 and Period 2 proteins in synovial tissue was investigated by immunofluorescence. The presence of mRNA of molecular clocks was studied during 72 h by qPCR. Characteristics of rhythms were studied with time series analysis.BMAL-1, CLOCK, Period 1 and Period 2 proteins were abundantly present in synovial tissue of OA, RA and controls. Receiving synovial tissue at different operation time points during the day (8:00 am to 4:00 pm) did not reveal a rhythm of BMAL-1 or Period 1 protein. In OASF and RASF, no typical rhythm curve of molecular clock mRNA was observed. Time series analysis identified a first peak between 2 and 18 hours after synchronization but a period was not detectable due to loss of rhythm. TNF inhibited mRNA of CLOCK, Period 1 and Period 2 in OASF, while IL-1β and TNF increased these factors in RASF. This was supported by dose-dependently increased levels in MH7A RA fibroblasts. In RASF, IL-1β and TNF shifted the first peak of BMAL-1 mRNA to later time points (8 h to 14 h).Rhythmicity is not present in primary OASF and RASF, which is unexpected because fibroblasts usually demonstrate perfect rhythms during several days. This might lead to uncoupling of important cellular pathways.Symptoms, such as swelling, pain, stiffness, and functional ability, follow a circadian rhythm in patients with rheumatoid arthritis (RA) [1]. The circadian change of symptoms depends on increased levels of proinflammatory cytokines in the late night and early morning [1-4], which can be blocked by night time application of glucocorticoids [4-6]. Circadian changes on the level of the entire body might be translated into rhythmic phenomena in peripheral cells of inflamed tissue. While oscillations of the entire system are dependent on external synchronizers, such as light, and are called circadian rhythms, undulations of intracellular molecular clock networks are dubbed daily rhythms depending on synchronization with, for example, serum sho
|