全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Danish Model for Improvement of Diabetes Care in General Practice: Impact of Automated Collection and Feedback of Patient Data

DOI: 10.1155/2012/208123

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Sentinel Data Capture is an IT program designed to collect data automatically from GPs’ electronic health record system. Data include ICPC diagnoses, National Health Service disbursement codes, laboratory analysis, and prescribed drugs. Quality feedback reports are generated individually for each practice on the basis of the accumulated data and are available online only for the specific practice. Objective. To describe the development of the quality of care concerning drug prescriptions for diabetes patients listed with GPs using the Data Capture module. Methods. In a cohort study, among 8320 registered patients with diabetes, we analyzed the change in the proportion of medication for uncontrolled cases of diabetes. Results. From 2009 to 2010, there was an absolute risk reduction of 1.35% (0.89–1.81: ) in proportion of persons not in antidiabetic medication despite an HbA1c above 7.0. Similarly, there was a 4.51% (3.42–5.61: ) absolute risk reduction in patients not in antihypertensive treatment despite systolic blood pressure above 130?mm?Hg and 4.73% (3.56–5.90: ) absolute risk reduction in patients with total cholesterol level above 4.5?mmol/L and not receiving lipid-lowering treatment. Conclusions. Structured collection of electronic data from general practice and feedback with reports on quality of care for diabetes patient seems to give a significant reduction in proportion of patients with no medical treatment over one year for participating GPs. Due to lack of a control group, we are, however, not able to say if the drop in the proportion of uncontrolled cases is a result of participation in collection of electronic data and feedback alone. 1. Background Several interventions have been investigated in order to improve quality of diabetes care. Two recent systematic reviews evaluated interventions to improve diabetes management including provider education, point-of-care reminders, audit and feedback, and registries. Both reviews showed improved processes for physician-directed interventions but no improvements in patient outcomes for diabetes [1, 2]. Only few studies have, however, dealt with automatically collected and electronic feedback with data to doctors on diabetes care [3]. Danish general practice is considered leading in integrating IT technology in everyday patient care and in the electronic communication with the rest of health care system [4]. In 2006, Danish general practitioners (GPs) were invited to implement a Data Capture module. Data from the participating practices were automatically sent to the National Danish

References

[1]  C. M. Renders, G. D. Valk, L. V. Franse, F. G. Schellevis, J. T. M. van Eijk, and G. van der Wal, “Long-term effectiveness of a quality improvement program for patients with type 2 diabetes in general practice,” Diabetes Care, vol. 24, no. 8, pp. 1365–1370, 2001.
[2]  K. G. Shojania, S. R. Ranji, K. M. McDonald et al., “Effects of quality improvement strategies for type 2 diabetes on glycemic control: a meta-regression analysis,” Journal of the American Medical Association, vol. 296, no. 4, pp. 427–440, 2006.
[3]  T. L. Guldberg, T. Lauritzen, J. K. Kristensen, and P. Vedsted, “The effect of feedback to general practitioners on quality of care for people with type 2 diabetes. A systematic review of the literature,” BMC Family Practice, vol. 10, article 30, 2009.
[4]  S. N. Bhanoo, Denmark Leads the Way in Digital Care, The New York Times, New York, NY, USA, 2010.
[5]  T. Drivsholm, C. N?hr Rasmussen, D. Henderson, C. Noringriis, and P. Schultz-Larsen, Type 2 Diabetes in Primary Care. An Evidencebased Guideline, The Danish College of General Practitioners, 2004.
[6]  J. Mainz, B. R. Krog, B. Bj?rnshave, and P. Bartels, “Nationwide continuous quality improvement using clinical indicators: the Danish National Indicator Project,” International Journal for Quality in Health Care, vol. 16, supplement 1, pp. i45–i50, 2004.
[7]  T. L. Guldberg, P. Vedsted, J. K. Kristensen, and T. Lauritzen, “Improved quality of type 2 diabetes care following electronic feedback of treatment status to general practitioners: a cluster randomized controlled trial,” Diabetic Medicine, vol. 28, no. 3, pp. 325–332, 2011.
[8]  J. S. Hunt, J. Siemienczuk, W. Gillanders et al., “The impact of a physician-directed health information technology system on diabetes outcomes in primary care: a pre- and postimplementation study,” Informatics in Primary Care, vol. 17, no. 3, pp. 165–174, 2009.
[9]  V. Weber, A. White, and R. McIlvried, “An electronic medical record (EMR)-based intervention to reduce polypharmacy and falls in an ambulatory rural elderly population,” Journal of General Internal Medicine, vol. 23, no. 4, pp. 399–404, 2008.
[10]  S. M. Campbell, D. Reeves, E. Kontopantelis, B. Sibbald, and M. Roland, “Effects of pay for performance on the quality of primary care in England,” The New England Journal of Medicine, vol. 361, no. 4, pp. 368–378, 2009.
[11]  A. Scott, P. Sivey, D. A. Ouakrim et al., “The effect of financial incentives on the quality of health care provided by primary care physicians,” Cochrane Database of Systematic Reviews, vol. 2011, no. 9, Article ID CD008451, 2011.
[12]  H. Schroll, H. St?vring, and J. Kragstrup, “Differences in the use of international classification for primary care diagnosis by general practitioners: inter- and intraobserver variations,” Ugeskrift for Laeger, vol. 165, no. 43, pp. 4104–4107, 2003.
[13]  H. Britt, M. Angelis, and E. Harris, “The reliability and validity of doctor-recorded morbidity data in active data collection systems,” Scandinavian Journal of Primary Health Care, vol. 16, no. 1, pp. 50–55, 1998.
[14]  I. M. Okkes, H. W. Becker, R. M. Bernstein, and H. Lamberts, “The March 2002 update of the electronic version of ICPC-2. A step forward to the use of ICD-10 as a nomenclature and a terminology for ICPC-2,” Family Practice, vol. 19, no. 5, pp. 543–546, 2002.
[15]  M. Rosendal and E. Falk?, “Diagnostic classification in Denmark with emphasis on general practice,” Ugeskrift for Laeger, vol. 171, no. 12, pp. 997–1000, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133