|
Critical Care 2011
Passive leg raising can predict fluid responsiveness in patients placed on venovenous extracorporeal membrane oxygenationDOI: 10.1186/cc10451 Keywords: acute respiratory distress syndrome, fluid responsiveness, passive leg raising, extracorporeal membrane oxygenation, venovenous Abstract: We carried out a prospective study in a university hospital surgical ICU. All patients with ARDS treated with venovenous ECMO and exhibiting clinical and laboratory signs of hypovolaemia were enrolled. We measured PLR-induced changes in stroke volume (ΔPLRSV) and cardiac output (ΔPLRCO) using transthoracic echocardiography. We also assessed PLR-induced changes in ECMO pump flow (ΔPLRPO) and PLR-induced changes in ECMO pulse pressure (ΔPLRPP) as predictors of fluid responsiveness. Responders were defined by an increase in stroke volume (SV) > 15% after VE.Twenty-five measurements were obtained from seventeen patients. In 52% of the measurements (n = 13), SV increased by > 15% after VE (responders). The patients' clinical characteristics appeared to be similar between responders and nonresponders. In the responder group, PLR significantly increased SV, cardiac output and pump flow (P < 0.001). ΔPLRSV values were correlated with VE-induced SV variations (r2 = 0.72, P = 0.0001). A 10% increased ΔPLRSV predicted fluid responsiveness with an area under the receiver operating characteristic curve (AUC) of 0.88 ± 0.07 (95% confidence interval (CI95): 0.69 to 0.97; P < 0.0001), 62% sensitivity and 92% specificity. On the basis of AUCs of 0.62 ± 0.11 (CI95: 0.4 to 0.8; P = 0.31) and 0.53 ± 0.12 (CI95: 0.32 to 0.73, P = 0.79), respectively, ΔPLRPP and ΔPLRPO did not predict fluid responsiveness.In patients treated with venovenous ECMO, a > 10% ΔPLRSV may predict fluid responsiveness. ΔPLRPP and ΔPLRPO cannot predict fluid responsiveness.In ICUs, fluid administration is frequently used to treat hypovolaemia to enhance cardiac function by increasing preload. Many studies have demonstrated that fluid responsiveness can be predicted by using respiratory derivative indices (pulse pressure variation (ΔrespPP), stroke volume (SV) variation (ΔrespSV) and aortic velocity-time integral variation (ΔrespVTIAo)) [1-5]. From a clinical perspective, owing to altered alveolar capillary membra
|