|
Automated evaluation of autoantibodies on human epithelial-2 cells as an approach to standardize cell-based immunofluorescence testsDOI: 10.1186/ar2949 Abstract: Autoantibody detection by IIF on human epithelial-2 (HEp-2) cells was conducted in a total of 1222 consecutive sera of patients with suspected systemic rheumatic diseases from a university routine laboratory (n = 924) and a private referral laboratory (n = 298). IIF results from routine diagnostics were compared with a novel automated interpretation system.Both diagnostic procedures showed a very good agreement in detecting AAB (kappa = 0.828) and differentiating respective immunofluorescence patterns. Only 98 (8.0%) of 1222 sera demonstrated discrepant results in the differentiation of positive from negative samples. The contingency coefficients of chi-square statistics were 0.646 for the university laboratory cohort with an agreement of 93.0% and 0.695 for the private laboratory cohort with an agreement of 90.6%, P < 0.0001, respectively. Comparing immunofluorescence patterns, 111 (15.3%) sera yielded differing results.Automated assessment of AAB by IIF on HEp-2 cells using an automated interpretation system is a reliable and robust method for positive/negative differentiation. Employing novel mathematical algorithms, automated interpretation provides reproducible detection of specific immunofluorescence patterns on HEp-2 cells. Automated interpretation can reduce drawbacks of IIF for AAB detection in routine diagnostics providing more reliable data for clinicians.Disease-specific autoantibodies (ABBs) are a serological phenomenon of systemic rheumatic conditions and autoimmune liver disorders. Despite the development of enzyme-linked immunosorbent immunoassay (ELISA) and multiplexing technologies for the detection of disease-specific AABs, the screening for anti-nuclear antibodies (ANAs) by indirect immunofluorescence (IIF) assays remains a standard method in the current diagnostic approach [1-6]. Several substrates have been proposed for ANA IIF assays; however, the screening for non-organ-specific AABs on human epithelial (HEp-2) cells is the most established m
|