全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Depletion of the heaviest stable N isotope is associated with NH4+/NH3 toxicity in NH4+-fed plants

DOI: 10.1186/1471-2229-11-83

Keywords: Low affinity ammonium transporters, Nitrogen isotopic signature, Ammonium/ammonia, Ammonium dissociation isotope factor, ammonia uptake

Full-Text   Cite this paper   Add to My Lib

Abstract:

Several NO3--fed plants were consistently enriched in 15N, whereas plants under NH4+ nutrition were depleted of 15N. It was shown that more sensitive plants to NH4+ toxicity were the most depleted in 15N. In parallel, N-deficient pea and spinach plants fed with 15NH4+ showed an increased level of NH3 uptake at alkaline pH that was related to the 15N depletion of the plant. Tolerant to NH4+ pea plants or sensitive spinach plants showed similar trend on 15N depletion while slight differences in the time kinetics were observed during the initial stages. The use of RbNO3 as control discarded that the differences observed arise from pH detrimental effects.This article proposes that the negative values of δ15N in NH4+-fed plants are originated from NH3 uptake by plants. Moreover, this depletion of the heavier N isotope is proportional to the NH4+/NH3 toxicity in plants species. Therefore, we hypothesise that the low affinity transport system for NH4+ may have two components: one that transports N in the molecular form and is associated with fractionation and another that transports N in the ionic form and is not associated with fractionation.Nitrogen (N) and carbon (C) are the main components of all living organisms and regulate the productivity of most ecosystems. In agriculture, N is by far the main nutrient in fertilisers, with nitrate (NO3-) and ammonium (NH4+) being the main N sources used by plants. However, relatively little is known about the isotopic fractionation during uptake of these ions. Assessment under natural conditions is difficult because, under most circumstances, NO3- and NH4+ are simultaneously present in the soil and their concentrations change both spatially and temporally over a wide range (e.g., 20 μM to 20 mM) [1,2]. Furthermore, this situation becomes even more complex if the rhizosphere and its symbiotic interactions (N2-fixing organisms or mycorrhiza) are taken into account.The natural variation in stable N isotopes has been shown to be a pow

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133