|
BMC Plant Biology 2011
Parthenocarpic potential in Capsicum annuum L. is enhanced by carpelloid structures and controlled by a single recessive geneAbstract: We identified several additional C. annuum genotypes with a certain level of parthenocarpy, and confirmed a positive correlation between parthenocarpic potential and the development of carpelloid structures. Investigations into the source of these carpel-like structures showed that while the majority of the ovules in C. annuum gynoecia are unitegmic and anatropous, several abnormal ovules were observed, abundant at the top and base of the placenta, with altered integument growth. Abnormal ovule primordia arose from the placenta and most likely transformed into carpelloid structures in analogy to the Arabidopsis bel1 mutant. When pollination was present fruit weight was positively correlated with seed number, but in the absence of seeds, fruit weight proportionally increased with the carpelloid mass and number. Capsicum genotypes with high parthenocarpic potential always showed stronger carpelloid development. The parthenocarpic potential appeared to be controlled by a single recessive gene, but no variation in coding sequence was observed in a candidate gene CaARF8.Our results suggest that in the absence of fertilization most C. annuum genotypes, have parthenocarpic potential and carpelloid growth, which can substitute developing seeds in promoting fruit development.Pollination and fertilization are required in most flowering plants to initiate the transition from a fully receptive flower to undergo fruit development. After fertilization the ovules develop into seeds and the surrounding carpels develop into the fruit, while in the absence of fertilization the ovules degenerate and growth of the surrounding carpels remains repressed [1]. The initiation of fruit set can be uncoupled from fertilization, and this results in the development of seedless or parthenocarpic fruits. This can be achieved by ectopic application or artificial overproduction of plant hormones [1], or by mutating or altering the expression of specific genes. In Arabidopsis, the fruit without ferti
|