全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Global transcriptome analysis of two ameiotic1 alleles in maize anthers: defining steps in meiotic entry and progression through prophase I

DOI: 10.1186/1471-2229-11-120

Keywords: meiosis, meiocytes, transcriptomes, leptotene/zygotene transition, pollen mother cells

Full-Text   Cite this paper   Add to My Lib

Abstract:

1.0 mm and 1.5 mm anthers of am1-489 and am1-praI were profiled in comparison to fertile siblings on Agilent? 4 × 44 K microarrays. Both am1-489 and am1-praI anthers are cytologically normal at 1.0 mm and show moderate transcriptome alterations. At the 1.5-mm stage both mutants are aberrant cytologically, and show more drastic transcriptome changes. There are substantially more absolute On/Off and twice as many differentially expressed genes (sterile versus fertile) in am1-489 than in am1-praI. At 1.5 mm a total of 4,418 genes are up- or down-regulated in either am1-489 or am1-praI anthers. These are predominantly stage-specific transcripts. Many putative meiosis-related genes were found among them including a small subset of allele-specific, mis-regulated genes specific to the PMCs. Nearly 60% of transcriptome changes in the set of transcripts mis-regulated in both mutants (N = 530) are enriched in PMCs, and only 1% are enriched in the tapetal cell transcriptome. All array data reported herein will be deposited and accessible at MaizeGDB http://www.maizegdb.org/ webcite.Our analysis of anther transcriptome modulations by two distinct am1 alleles, am1-489 and am1-praI, redefines the role of AM1 as a modulator of expression of a subset of meiotic genes, important for meiotic progression and provided stage-specific insights into the genetic networks associated with meiotic entry and early prophase I progression.During sexual reproduction meiosis insures that progeny receive half their genetic information from each parent, thus maintaining the correct ploidy from generation to generation. Many genes essential for meiosis are highly conserved in fungi, invertebrates, mammals, and plants. On the contrary, mechanisms governing the initiation of meiosis are diverse [1]. Unlike animals, plants lack a germ line pre-determined early in development. Therefore, understanding the molecular changes that specify the archesporial cells, the progenitors of meiotic cells, is crucial

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133