全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Differences in Chemical Sexual Signals May Promote Reproductive Isolation and Cryptic Speciation between Iberian Wall Lizard Populations

DOI: 10.1155/2012/698520

Full-Text   Cite this paper   Add to My Lib

Abstract:

Interpopulational variation in sexual signals may lead to premating reproductive isolation and speciation. Genetic and morphological studies suggest that the Iberian wall lizard, Podarcis hispanica, forms part of a “species complex” with several cryptic species. We explored the role of chemical sexual signals in interpopulational recognition between five distinct populations of Iberian wall lizards in Central Spain. Results showed that these populations differed in morphology and in composition and proportion of chemical compounds in femoral gland secretions of males. Tongue-flick experiments indicated that male and female lizards discriminated and were more interested in scents of lizards from their own area (i.e., Northern versus Southern populations), but did not discriminate between all populations. Moreover, only males from the populations that are geographically located more far away preferred scent of females from their own population. These data suggest that, at least between some populations, there may be reproductive isolation mediated by chemical signals and cryptic speciation. 1. Introduction Interpopulational variation in sexual chemical signals may provide the basis for premating reproductive isolation and speciation in many animals [1, 2]. Phenotypic plasticity in sexual signals could play a key role in initial signal divergence [3], for example, as a way to maximize the efficiency of signals for communication in different environments [4, 5]. These differences can be later amplified by sexual selection leading to differences in mating preferences [6–8], which could preclude mating between populations (e.g., [9–13]), and lead to speciation processes. In many lizards, intraspecific communication and sexual selection are based on chemical signals secreted by specific glands [14–17]. For example, chemical compounds secreted by femoral gland of males can convey information about social status [18–22] and genetic quality of a male [23–26]. Also, differences in chemical signals may preclude interspecific mating between related sympatric species (e.g., [27, 28]). We hypothesized that interpopulational variations in femoral gland secretions within the same species might lead to reproductive isolation and thus promote speciation processes. The Iberian wall lizard, Podarcis hispanica, is a small diurnal lizard, living in rocky habitats of the Iberian Peninsula. Molecular and morphological studies suggest that this lizard is paraphyletic and forms part of a “species complex,” which suggests the existence of cryptic speciation within taxa previously

References

[1]  T. D. Wyatt, Pheromones and Animal Behaviour, Cambridge University Press, Cambridge, UK, 2003.
[2]  C. Smadja and R. K. Butlin, “On the scent of speciation: the chemosensory system and its role in premating isolation,” Heredity, vol. 102, no. 1, pp. 77–97, 2009.
[3]  C. K. Cornwallis and T. Uller, “Towards an evolutionary ecology of sexual traits,” Trends in Ecology and Evolution, vol. 25, no. 3, pp. 145–152, 2010.
[4]  A. C. Alberts, “Constraints on the design of chemical communication systems in terrestrial vertebrates,” American Naturalist, vol. 139, pp. S62–S89, 1992.
[5]  M. R. E. Symonds and M. A. Elgar, “The evolution of pheromone diversity,” Trends in Ecology and Evolution, vol. 23, no. 4, pp. 220–228, 2008.
[6]  J. W. Boughman, “Divergent sexual selection enhances reproductive isolation in sticklebacks,” Nature, vol. 411, no. 6840, pp. 944–948, 2001.
[7]  T. M. Panhuis, R. Butlin, M. Zuk, and T. Tregenza, “Sexual selection and speciation,” Trends in Ecology and Evolution, vol. 16, no. 7, pp. 364–371, 2001.
[8]  M. G. Ritchie, “Sexual selection and speciation,” Annual Review of Ecology, Evolution, and Systematics, vol. 38, pp. 79–102, 2007.
[9]  R. Shine, R. N. Reed, S. Shetty, M. Lemaster, and R. T. Mason, “Reproductive isolating mechanisms between two sympatric sibling species of sea snakes,” Evolution, vol. 56, no. 8, pp. 1655–1662, 2002.
[10]  M. P. Lemaster and R. T. Mason, “Pheromonally mediated sexual isolation among denning populations of red-sided garter snakes, Thamnophis sirtalis parietalis,” Journal of Chemical Ecology, vol. 29, no. 4, pp. 1027–1043, 2003.
[11]  J. Martín and P. López, “Interpopulational differences in chemical composition and chemosensory recognition of femoral gland secretions of male lizards Podarcis hispanica: implications for sexual isolation in a species complex,” Chemoecology, vol. 16, no. 1, pp. 31–38, 2006.
[12]  J. Martín and P. López, “Pre-mating mechanisms favouring or precluding speciation in a species complex: chemical recognition and sexual selection between types in the lizard Podarcis hispanica,” Evolutionary Ecology Research, vol. 8, no. 4, pp. 643–658, 2006.
[13]  A. Runemark, M. Gabirot, and E. I. Svensson, “Population divergence in chemical signals and the potential for premating isolation between islet- and mainland populations of the Skyros wall lizard (Podarcis gaigeae),” Journal of Evolutionary Biology, vol. 24, no. 4, pp. 795–809, 2011.
[14]  R. T. Mason, “Reptilian pheromones,” in Biology of the Reptilia, C. Gans and D. Crews, Eds., vol. 18, pp. 114–228, University of Chicago Press, Chicago, Ill, USA, 1992.
[15]  A. C. Alberts, “Chemical and behavioral studies of femoral gland secretions in iguanid lizards,” Brain, Behavior and Evolution, vol. 41, no. 3–5, pp. 255–260, 1993.
[16]  R. T. Mason and M. R. Parker, “Social behavior and pheromonal communication in reptiles,” Journal of Comparative Physiology A, vol. 196, no. 10, pp. 729–749, 2010.
[17]  J. Martín and P. López, “Pheromones and reproduction in reptiles,” in Hormones and Reproduction in Vertebrates—Reptiles, D. O. Norris and K. H. Lopez, Eds., pp. 141–167, Academic Press, San Diego, Calif, USA, 2011.
[18]  P. Aragón, P. López, and J. Martín, “Chemosensory discrimination of familiar and unfamiliar conspecifics by lizards: implications of field spatial relationships between males,” Behavioral Ecology and Sociobiology, vol. 50, no. 2, pp. 128–133, 2001.
[19]  P. López and J. Martín, “Chemical rival recognition decreases aggression levels in male Iberian wall lizards, Podarcis hispanica,” Behavioral Ecology and Sociobiology, vol. 51, no. 5, pp. 461–465, 2002.
[20]  P. Carazo, E. Font, and E. Desfilis, “Chemosensory assessment of rival competitive ability and scent-mark function in a lizard, Podarcis hispanica,” Animal Behaviour, vol. 74, no. 4, pp. 895–902, 2007.
[21]  J. Martín and P. López, “Scent may signal fighting ability in male Iberian rock lizards,” Biology Letters, vol. 3, no. 2, pp. 125–127, 2007.
[22]  J. Martín, P. L. Moreira, and P. López, “Status-signalling chemical badges in male Iberian rock lizards,” Functional Ecology, vol. 21, no. 3, pp. 568–576, 2007.
[23]  J. Martín and P. López, “Chemoreception, symmetry and mate choice in lizards,” Proceedings of the Royal Society B, vol. 267, no. 1450, pp. 1265–1269, 2000.
[24]  J. Martín and P. López, “Links between male quality, male chemical signals, and female mate choice in Iberian Rock Lizards,” Functional Ecology, vol. 20, no. 6, pp. 1087–1096, 2006.
[25]  J. Martín and P. López, “Vitamin D supplementation increases the attractiveness of males' scent for female Iberian rock lizards,” Proceedings of the Royal Society B, vol. 273, no. 1601, pp. 2619–2624, 2006.
[26]  M. Olsson, T. Madsen, J. Nordby, E. Wapstra, B. Ujvari, and H. Wittsell, “Major histocompatibility complex and mate choice in sand lizards,” Proceedings of the Royal Society B, vol. 270, no. 2, supplement, pp. s254–s256, 2003.
[27]  W. E. Cooper and L. J. Vitt, “Ethological isolation, sexual behavior and pheromones in the fasciatus species group of the lizard genus Eumeces,” Ethology, vol. 75, no. 4, pp. 328–336, 1987.
[28]  D. Barbosa, E. Font, E. Desfilis, and M. A. Carretero, “Chemically mediated species recognition in closely related Podarcis wall lizards,” Journal of Chemical Ecology, vol. 32, no. 7, pp. 1587–1598, 2006.
[29]  C. P. Guillaume, Les Petits Lacertidés du Bassin Mediterranéen Occidental (Genera Podarcis et Archeolacerta essentiellement), Ph.D. thesis, Université des Sciences et Techniques du Languedoc, Montpellier, France, 1987.
[30]  D. J. Harris and P. Sá-Sousa, “Species distinction and relationships of the western Iberian Podarcis lizards (Reptilia, Lacertidae) based on morphology and mitochondrial DNA sequences,” Herpetological Journal, vol. 11, no. 4, pp. 129–136, 2001.
[31]  D. J. Harris and P. Sá-Sousa, “Molecular phylogenetics of Iberian wall lizards (Podarcis): is Podarcis hispanica a species complex?” Molecular Phylogenetics and Evolution, vol. 23, no. 1, pp. 75–81, 2002.
[32]  P. Sá-Sousa, L. Vicente, and E. G. Crespo, “Morphological variability of Podarcis hispanica (Sauria: Lacertidae) in Portugal,” Amphibia Reptilia, vol. 23, no. 1, pp. 55–69, 2002.
[33]  C. Pinho, D. J. Harris, and N. Ferrand, “Comparing patterns of nuclear and mitochondrial divergence in a cryptic species complex: the case of Iberian and North African wall lizards (Podarcis, Lacertidae),” Biological Journal of the Linnean Society, vol. 91, no. 1, pp. 121–133, 2007.
[34]  M. A. Carretero, “An integrated assessment of a group with complex systematics: the Iberomaghrebian lizard genus Podarcis (Squamata, Lacertidae),” Integrative Zooloogy, vol. 3, no. 4, pp. 247–266, 2008.
[35]  J. Martín and P. López, “Chemosensory responses by female Iberian wall lizards, Podarcis hispanica to selected lipids found in femoral gland secretions of males,” Journal of Herpetology, vol. 40, no. 4, pp. 556–561, 2006.
[36]  A. Gómez, E. Font, and E. Desfilis, “Chemoreception in the Lacertidae: exploration and conspecific discrimination in the Spanish wall lizard, Podarcis hispanica,” in Lacertids of the Mediterranean Region, E. D. Valakos, W. B?hme, V. Pérez-Mellado, and P. Maragoú, Eds., pp. 213–230, Helenic Zoological Society, Athens, Greece, 1993.
[37]  P. López and J. Martín, “Pheromonal recognition of females takes precedence over the chromatic cue in male Iberian wall lizards Podarcis hispanica,” Ethology, vol. 107, no. 10, pp. 901–912, 2001.
[38]  W. E. Cooper and V. Pèrez-Mellado, “Pheromonal discriminations of sex, reproductive condition, and species by the lacertid lizard Podarcis hispanica,” Journal of Experimental Zoology, vol. 292, no. 6, pp. 523–527, 2002.
[39]  P. López, J. Martín, and M. Cuadrado, “Pheromone-mediated intrasexual aggression in male lizards, Podarcis hispanicus,” Aggressive Behavior, vol. 28, no. 2, pp. 154–163, 2002.
[40]  P. Carazo, E. Font, and E. Desfilis, “Beyond 'nasty neighbours' and “dear enemies”? Individual recognition by scent marks in a lizard (Podarcis hispanica),” Animal Behaviour, vol. 76, no. 6, pp. 1953–1963, 2008.
[41]  P. López and J. Martín, “Female Iberian wall lizards prefer male scents that signal a better cell-mediated immune response,” Biology Letters, vol. 1, no. 4, pp. 404–406, 2005.
[42]  J. Martín, P. López, M. Gabirot, and K. M. Pilz, “Effects of testosterone supplementation on chemical signals of male Iberian wall lizards: consequences for female mate choice,” Behavioral Ecology and Sociobiology, vol. 61, no. 8, pp. 1275–1282, 2007.
[43]  M. García-Paris, C. Martín, and J. Dorda, Los Anfibios y Reptiles de Madrid, Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain, 1989.
[44]  V. Pérez-Mellado and M. P. Galindo-Villardón, Sistemática de Podarcis (Sauria Lacertidae) ibéricas y Norteafricanas Mediante Técnicas Multidimensionales, Ediciones de la Universidad de Salamanca, Salamanca, Spain, 1986.
[45]  P. López, J. Martín, and M. Cuadrado, “The role of lateral blue spots in intrasexual relationships between male Iberian rock-lizards, Lacerta monticola,” Ethology, vol. 110, no. 7, pp. 543–561, 2004.
[46]  R. R. Sokal and F. J. Rohlf, Biometry, W. H. Freeman, New York, NY, USA, 3rd edition, 1995.
[47]  J. Aitchison, The Statistical Analysis of Compositional Data: Monographs in Statistics and Applied Probability, Chapman and Hall, London, UK, 1986.
[48]  V. Dietemann, C. Peeters, J. Liebig, V. Thivet, and B. H?lldobler, “Cuticular hydrocarbons mediate discrimination of reproductives and nonreproductives in the ant Myrmecia gulosa,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 18, pp. 10341–10346, 2003.
[49]  P. López, L. Amo, and J. Martín, “Reliable signaling by chemical cues of male traits and health state in male lizards, Lacerta monticola,” Journal of Chemical Ecology, vol. 32, no. 2, pp. 473–488, 2006.
[50]  W. E. Cooper and G. M. Burghardt, “A comparative analysis of scoring methods for chemical discrimination of prey by squamate reptiles,” Journal of Chemical Ecology, vol. 16, no. 1, pp. 45–65, 1990.
[51]  Y. Yom-Tov and H. Nix, “Climatological correlates for body size of five species of Australian mammals,” Biological Journal of the Linnean Society, vol. 29, no. 4, pp. 245–262, 1986.
[52]  L. M. Carrascal, P. López, J. Martín, and A. Salvador, “Basking and antipredator behaviour in a high altitude lizard: implications of heat-exchange rate,” Ethology, vol. 92, no. 2, pp. 143–154, 1992.
[53]  C. M. Escobar, C. A. Escobar, A. Labra, and H. M. Niemeyer, “Chemical composition of precloacal secretions of two Liolaemus fabiani populations: are they different?” Journal of Chemical Ecology, vol. 29, no. 3, pp. 629–638, 2003.
[54]  S. F. Fox and P. A. Shipman, “Social behavior at high and low elevations: environmental release and phylogenetic effects in Liolaemus,” in Lizard Social Behavior, S. F. Fox, J. K. McCoy, and T. A. Baird, Eds., pp. 310–355, John Hopkins University Press, Baltimore, Md, USA, 2003.
[55]  P. J. Weldon, B. Flachsbarth, and S. Schulz, “Natural products from the integument of nonavian reptiles,” Natural Product Reports, vol. 25, no. 4, pp. 738–756, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133