全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A new microspore embryogenesis system under low temperature which mimics zygotic embryogenesis initials, expresses auxin and efficiently regenerates doubled-haploid plants in Brassica napus

DOI: 10.1186/1471-2229-12-127

Keywords: Microspore embryogenesis, Zygotic-like microspore embryogenesis, Suspensor-like, Brassica napus, Doubled-haploid, Embryo germination, Plant regeneration, In vitro microspore culture, Auxin, IAA

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have developed a new in vitro system at lower temperature (18°C) to efficiently induce microspore embryogenesis throughout two different developmental pathways: one involving the formation of suspensor-like structures (52.4%) and another producing multicellular embryos without suspensor (13.1%); additionally, a small proportion of non-responsive microspores followed a gametophytic-like development (34.4%) leading to mature pollen. The suspensor-like pathway followed at 18°C involved the establishment of asymmetric identities from the first microspore division and an early polarity leading to different cell fates, suspensor and embryo development, which were formed by cells with different organizations and endogenous auxin distribution, similar to zygotic embryogenesis. In addition, a new strategy for germination of microspore derived embryos was developed for achieving more than 90% conversion of embryos to plantlets, with a predominance of spontaneous doubled haploids plants.The present work reveals a novel mechanism for efficient microspore embryogenesis induction in B. napus using continuous low temperature treatment. Results indicated that low temperature applied for longer periods favours an embryogenesis pathway whose first division originates asymmetric cell identities, early polarity establishment and the formation of suspensor-like structures, mimicking zygotic embryogenesis. This new in vitro system provides a convenient tool to analyze in situ the mechanisms underlying different developmental pathways during the microspore reprogramming, breaking or not the cellular symmetry, the establishment of polarity and the developmental embryo patterning, which further produce mature embryos and plants.In recent years, microspore culture for doubled haploids (DH) has become a routine biotechnological tool for value addition in crops and several successful DH protocols that can fast track traditional or modern plant breeding approaches have been described in Bras

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133