|
BMC Plant Biology 2012
The rise of the Himalaya enforced the diversification of SE Asian ferns by altering the monsoon regimesKeywords: Diversification pattern, East Asian monsoon, Himalaya, LASER, Lepisorus Abstract: Our analyses of the diversification pattern of the derived fern genus Lepisorus recovered evidence for changes in plant diversity that correlated with the strengthening of South East Asian monsoon. Southwest China or Southwest China and Japan was recovered as the putative area of origin of Lepisorus and enhancing monsoon regime were found to shape the early diversification of the genus as well as subsequent radiations during the late Miocene and Pliocene.We report new evidence for a coincidence of plant diversification and changes of the climate caused by the uplift of the Himalaya. These results are discussed in the context of the impact of incomplete taxon sampling, uncertainty of divergence time estimates, and limitations of current methods used to assess diversification rates.The origin of the uneven distribution of plant diversity, in particular with biodiversity hotspots [1], has been increasingly explored by employing phylogenetic methods to reconstruct the history of selected lineages. The majority of these studies addressed the origin of the Andean (e.g., [2-4]), Great Cape region (e.g., [5,6]) and Madagascan (e.g., [7,8]) biodiversity hotspots. These studies not only assembled evidence for the evolution of biodiversity of these particular hotspots but also laid out the foundation for a generalized theory on the history of biodiversity hotspots by classifying the attribution of diversification events into mature and rapid radiations [9]. Besides some shared features, the unique geographic and historical aspects, e.g. isolation by distance, relative constant climate, and major orogenic events, resulted in unique patterns of biodiversity assembly in these hotspots.Current macro-evolutionary studies have given remarkably little attention to the origin of the biodiversity hotspots in Southeast (SE) Asia such as the southwest Chinese mountain region [1]. However, the origin of the later biodiversity hotspot is widely attributed to the rise of the Himalaya and th
|