|
BMC Plant Biology 2012
Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress toleranceAbstract: In this study, we characterized the function of eIF5A (TaeIF5A1) from Tamarix androssowii. The promoter of TaeIF5A1 with 1,486?bp in length was isolated, and the cis-elements in the promoter were identified. A WRKY (TaWRKY) and RAV (TaRAV) protein can specifically bind to a W-box motif in the promoter of TaeIF5A1 and activate the expression of TaeIF5A1. Furthermore, TaeIF5A1, TaWRKY and TaRAV share very similar expression pattern and are all stress-responsive gene that functions in the abscisic acid (ABA) signaling pathway, indicating that they are components of a single regulatory pathway. Transgenic yeast and poplar expressing TaeIF5A1 showed elevated protein levels combined with improved abiotic stresses tolerance. Furthermore, TaeIF5A1-transformed plants exhibited enhanced superoxide dismutase (SOD) and peroxidase (POD) activities, lower electrolyte leakage and higher chlorophyll content under salt stress.These results suggested that TaeIF5A1 is involved in abiotic stress tolerance, and is likely regulated by transcription factors TaWRKY and TaRAV both of which can bind to the W-box motif. In addition, TaeIF5A1 may mediate stress tolerance by increasing protein synthesis, enhancing ROS scavenging by improving SOD and POD activities, and preventing chlorophyll loss and membrane damage. Therefore, eIF5A may play an important role in plant adaptation to changing environmental conditions.Eukaryotic initiation factor 5A (eIF5A) is a small protein ubiquitously present throughout the eukaryotic kingdom. The protein was initially identified in rabbit reticulocytes as a factor involved in formation of the first peptide bond [1,2]. EIF5A is a highly conserved protein and contains the post-translationally synthesized amino acid hypusine [3]. Molecular and biochemical studies in yeast and mammalian cells demonstrated that eIF5A is synthesized as an inactive precursor that is activated by a post-translational hypusine modification that is only detected in the eIF5A protein,
|