|
Cough 2009
Classification of voluntary cough sound and airflow patterns for detecting abnormal pulmonary functionAbstract: In the present study, fifty-two normal subjects and sixty subjects with either obstructive or restrictive lung disorders were asked to perform three individual voluntary coughs. The objective of the study was to evaluate if the airflow and sound characteristics of a voluntary cough could be used to distinguish between normal subjects and subjects with lung disease. This was done by extracting a variety of features from both the cough airflow and acoustic characteristics and then using a classifier that applied a reconstruction algorithm based on principal component analysis.Results showed that the proposed method for analyzing voluntary coughs was capable of achieving an overall classification performance of 94% and 97% for identifying abnormal lung physiology in female and male subjects, respectively. An ROC analysis showed that the sensitivity and specificity of the cough parameter analysis methods were equal at 98% and 98% respectively, for the same groups of subjects.A novel system for classifying coughs has been developed. This automated classification system is capable of accurately detecting abnormal lung function based on the combination of the airflow and acoustic properties of voluntary cough.Cough is a natural respiratory defense mechanism to protect the respiratory tract and one of the most common symptoms of pulmonary disease [1]. There is a growing interest in using the characteristics of voluntary cough to detect and characterize lung disease [2,3]. Currently, no standard method for automatically evaluating coughs has been established, even though a variety of approaches have been reported in the literature [4,5].A cough is normally initiated with an inspiration of a variable volume of air, followed by closure of the glottis, and contraction of the expiratory muscles that compresses the gas in the lungs. These events occur immediately before the sudden reopening of the glottis and rapid expulsion of air from the lungs. When flow limitation is reached
|