全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Refinement of Quasilinearization Method for Caputo's Sense Fractional-Order Differential Equations

DOI: 10.1155/2010/704367

Full-Text   Cite this paper   Add to My Lib

Abstract:

The method of the quasilinearization technique in Caputo's sense fractional-order differential equation is applied to obtain lower and upper sequences in terms of the solutions of linear Caputo's sense fractional-order differential equations. It is also shown that these sequences converge to the unique solution of the nonlinear Caputo's sense fractional-order differential equation uniformly and semiquadratically with less restrictive assumptions. 1. Introduction The well-known quasilinearization method [1, 2] in differential equation has been employed to obtain a sequence of lower and upper bounds which are the solutions of linear differential equations that converge quadratically. However, the convexity and concavity assumption that is demanded by the method of quasilinearization has been a stumbling block for further development of the theory. Recently, this method has been generalized, refined, and extended in several directions so as to be applicable to a much larger class of nonlinear problems by not demanding convexity and concavity property [1, 3–7]. Moreover, other possibilities that have been explored make the method of generalized quasilinearization universally useful in applications [3, 6, 7]. The theory of nonlinear fractional-order dynamic systems has been investigated depending on the development in the theory of fractional-order differential equations. In this context, generalized quasilinearization method has been reconsidered, and similar results parallel to classical theory of differential equations have been obtained [1, 2, 8]. In this work, the quasilinearization technique coupled with lower and upper solutions is employed to study Caputo’s fractional-order differential equation for which particular and general results that include several special cases are obtained. Moreover, one gets monotone sequences whose iterates are the solutions of corresponding linear problems and the sequences converge to the solutions of the original nonlinear problems. Instead of imposing the convexity assumption on the function involved, we assume weaker conditions as well as for the concave functions. This is a definite advantage of this constructive technique. Furthermore, these monotone flows are shown to converge semiquadratically. Consider the following initial value problem: where and is Caputo’s sense fractional-order derivative. Let and be the lower and upper solutions of (1.1) satisfying the following inequalities (1.2) and (1.3), respectively, on : The corresponding Volterra fractional integral equation is Caputo’s sense fractional-order

References

[1]  V. Lakshmikantham and A. S. Vatsala, Generalized Quasilinearization for Nonlinear Problems, vol. 440 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998.
[2]  V. Lakshmikantham, S. Leela, and J. Vasundhara Devi, Theory of Fractional Dynamic Systems, Cambridge Academic, Cambridge, UK, 2009.
[3]  S. K?ksal and C. Yakar, “Generalized quasilinearization method with initial time difference,” Simulation, vol. 24, no. 5, 2002.
[4]  J. Vasundhara Devi and C. Suseela, “Quasilinearization for fractional differential equations,” Communications in Applied Analysis, vol. 12, no. 4, pp. 407–418, 2008.
[5]  J. Vasundhara Devi, F. A. McRae, and Z. Drici, “Generalized quasilinearization for fractional differential equations,” Computers & Mathematics with Applications, vol. 59, no. 3, pp. 1057–1062, 2010.
[6]  C. Yakar and A. Yakar, “An extension of the quasilinearization method with initial time difference,” Dynamics of Continuous, Discrete & Impulsive Systems. Series A, vol. 14, supplement 2, pp. 1–305, 2007.
[7]  C. Yakar and A. Yakar, “Further generalization of quasilinearization method with initial time difference,” Journal of Applied Functional Analysis, vol. 4, no. 4, pp. 714–727, 2009.
[8]  T. C. Hu, D. L. Qian, and C. P. Li, “Comparison theorems for fractional differential equations,” Communication on Applied Mathematics and Computation, vol. 23, no. 1, pp. 97–103, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133