|
Refining transcriptional regulatory networks using network evolutionary models and gene historiesAbstract: In this paper, we extend the evolutionary model so as to take into account gene duplications and losses, which are viewed as major drivers in the evolution of regulatory networks. We show how to adapt our evolutionary approach to this new model and provide detailed simulation results, which show significant improvement on the reference network inference algorithms. Different evolutionary histories for gene duplications and losses are studied, showing that our adapted approach is feasible under a broad range of conditions. We also provide results on biological data (cis-regulatory modules for 12 species of Drosophila), confirming our simulation results.Transcriptional regulatory networks are models of the cellular regulatory system that governs transcription. Because establishing the topology of the network from bench experiments is very difficult and time-consuming, regulatory networks are commonly inferred from gene-expression data. Various computational models, such as Boolean networks [1], Bayesian networks [2], dynamic Bayesian networks (DBNs) [3], and differential equations [4,5], have been proposed for this purpose, along with associated inference algorithms. Results, however, have proved mixed: the high noise level in the data, the paucity of well studied networks, and the many simplifications made in the models all combine to make inference difficult.Bioinformatics has long used comparative and, more generally, evolutionary approaches to improve the accuracy of computational analyses. Work by Babu's group [6-8] on the evolution of regulatory networks in E. coli and S. cerevisiae has demonstrated the applicability of such approaches to regulatory networks. They posit a simple evolutionary model for regulatory networks, under which network edges are simply added or removed; they study how well such a model accounts for the dynamic evolution of the two most studied regulatory networks; they then investigate the evolution of regulatory networks with gene duplica
|