|
BMC Pediatrics 2011
Retest reliability of measuring hip extensor muscle strength in different testing positions in young people with cerebral palsyAbstract: Using a test-retest reliability research design, 19 participants with spastic diplegic cerebral palsy (Gross Motor Function Classification System Levels II and III) (mean 19 y 2 mo [S D 2 y 5 mo]) attended two testing sessions held 12 weeks apart. Three trials with a hand-held dynamometer were taken at each testing session in supine, prone and standing. Retest reliability was calculated with Intraclass Correlation Coefficients (ICC(2,1)) and with units of measurement (kilograms) converted to a percentage strength change.ICC values ranged from .74 to .78 in supine, .75 to .80 in prone, and .73 to .75 in standing. To be 95% confident that real change had occurred, an individual's strength would need to increase 55 to 60% in supine, 86 to 102% in prone, and 102 to 105% in standing. To be 95% confident that real change had occurred across groups, strength would need to increase 4 to 8% in supine, 22 to 31% in prone, and 32% to 34% in standing. Higher ICC values were observed when three trials were used for testing.The supine testing position was more reliable than the prone or standing testing positions. It is possible to measure hip extensor strength with sufficient reliability to be able monitor change within groups using the supine position provided three trials are used during testing. However, there is insufficient reliability to monitor changes in hip extensor strength in individuals with cerebral palsy unless they exhibit very large strength increases.A strong relationship has been demonstrated between lower limb muscle weakness and limitation of activity in young people with cerebral palsy [1-7]. The hip extensors, in particular, are important for many common every day functional activities such as being able to move from sit to stand, to climb steps and stairs, and to maintain upright posture during walking [8]. Hip extensor muscle weakness is one of the factors that can contribute to a gait pattern characterized by increased hip and knee flexion during stance,
|