全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Efficient unfolding pattern recognition in single molecule force spectroscopy data

DOI: 10.1186/1748-7188-6-16

Keywords: protein unfolding, single-molecule force spectroscopy, pattern recognition, Force-Distance curve

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the present work, we propose a pattern recognition algorithm and apply our algorithm to datasets from SMFS experiments on the membrane protein bacterioRhodopsin (bR). We discuss the unfolding pathways found in bR, which are characterised by main peaks and side peaks. A main peak is the result of the pairwise unfolding of the transmembrane helices. In contrast, a side peak is an unfolding event in the alpha-helix or other secondary structural element. The algorithm is capable of detecting side peaks along with main peaks.Therefore, we can detect the individual unfolding pathway as the sequence of events labeled with their occurrences and co-occurrences special to bR's unfolding pathway. We find that side peaks do not co-occur with one another in curves as frequently as main peaks do, which may imply a synergistic effect occurring between helices. While main peaks co-occur as pairs in at least 50% of curves, the side peaks co-occur with one another in less than 10% of curves. Moreover, the algorithm runtime scales well as the dataset size increases.Our algorithm satisfies the requirements of an automated methodology that combines high accuracy with efficiency in analyzing SMFS datasets. The algorithm tackles the force spectroscopy analysis bottleneck leading to more consistent and reproducible results.Mutations cause structural instabilities in a protein leading it to misfold. The misfolded protein conformation may interrupt ion transport and signal transduction. Protein instability and misfolding cause disease states, including cystic fibrosis, Charcot-Marie-Tooth disease, arrhythmias, hearing loss and retinitis pigmentosa [1].The number of protein structures deposited each year in the Protein Data Bank (PDB) has quadrupled over the past decade. However, the exact structures of many proteins remain unsolved due to the practical difficulties in the crystallization process for X-ray crystallography or resolving structures with NMR [2]. In the last decade the single-

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133