|
Cilia 2013
Reduced cilia frequencies in human renal cell carcinomas versus neighboring parenchymal tissueKeywords: Cilia, Kidney, Clear cell renal cell carcinoma, Chromophobe RCC, Papillary RCC, Oncocytoma, Histology Abstract: We stained sections of human renal material using markers for cilia. Preliminary staining was performed using an immunofluorescent approach and a combination of acetylated-α-tubulin and pericentrin antibodies and DAPI. After validation of an alternative, higher throughput approach using acetylated-α-tubulin immunohistochemistry, we continued to manually quantify cilia in all tissues. Nuclei were separately counted in an automated fashion in order to determine ciliary frequencies. Similar staining and scoring for Ki67 positive cells was performed to exclude that proliferation obscures cilia formation potential.Samples from renal cell carcinoma patients deposited in our hospital tissue bank were previously used to compose a tissue microarray containing three cores of both tumor and parenchymal tissue per patient. Cilia frequencies in a total of eighty-nine clear cell, eight papillary, five chromophobe renal cell carcinomas, two sarcomatoid renal tumors and six oncocytomas were determined. A marked decrease of primary cilia across renal cell carcinoma subtypes was observed compared to adjacent nontumorigenic tissue.Our study shows that cilia are predominantly lost in renal cell carcinomas compared to tissue of the tumor parenchyma. These results suggest that ciliary loss is common in renal tumorigenesis, possibly participating in the sequence of cellular events leading to malignant tumor development. Future therapies aimed at restoring or circumventing cilia signaling might therefore aid in current treatment efficacy.Primary cilia are small hair-like organelles that generally extend from the apical plasma membrane and are almost ubiquitously expressed throughout the human body [1]. Cilia function as sensory organelles in response to extracellular stimuli, such as fluid flow (mechanosensation) in addition to mitogenic, morphogenic and olfactory factors. Ciliary signaling is pivotal during development and organ homeostasis [2]. Dysfunctional cilia underlie the developmen
|