全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fgf2 is expressed in human and murine embryonic choroid plexus and affects choroid plexus epithelial cell behaviour

DOI: 10.1186/1743-8454-5-20

Full-Text   Cite this paper   Add to My Lib

Abstract:

Expression of Fgf2 was studied by immunohistochemistry in rodent and human embryonic choroid plexus. Effects of Fgf2 on growth, secretion, aggregation and gene expression was investigated using rodent CPe vesicles, a three-dimensional polarized culture model that closely mimics CPe properties in vivo, and rodent CPe monolayer cultures.Fgf2 was present early in development of the choroid plexus both in mouse and human, suggesting the importance of this ligand in Fgf signalling in the developing choroid plexus. Parallel analysis of Fgf2 expression and cell proliferation during CP development suggests that Fgf2 is not involved in CPe proliferation in vivo. Consistent with this observation is the failure of Fgf2 to increase proliferation in the tri-dimensional vesicle culture model. The CPe however, can respond to Fgf2 treatment, as the diameter of CPe vesicles is significantly increased by treatment with this growth factor. We show that this is due to an increase in cell aggregation during vesicle formation rather than increased secretion into the vesicle lumen. Finally, Fgf2 regulates expression of the CPe-associated transcription factors, Foxj1 and E2f5, whereas transthyretin, a marker of secretory activity, is not affected by Fgf2 treatment.Fgf2 expression early in the development of both human and rodent choroid plexus, and its ability to modulate behaviour and gene expression in CPe, supports the view that Fgf signalling plays a role in the maintenance of integrity and function of this specialized epithelium, and that this role is conserved between rodents and humans.The choroid plexus epithelium (CPe) is a specialized neuroepithelium that is involved in secretion of cerebrospinal fluid (CSF) into the cerebral ventricles and in maintaining the homeostasis of the brain during development and throughout life [1-3]. Most CSF is secreted by the CPe and is re-absorbed mainly at the site of the arachnoid villi. Knockout of genes expressed in the CPe, such as E2f5, a mem

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133