全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PIER C  2012 

An Effective Wideband Spectrum Sensing Method Based on Sparse Signal Reconstruction for Cognitive Radio Networks

DOI: 10.2528/PIERC12021604

Full-Text   Cite this paper   Add to My Lib

Abstract:

Wideband spectrum sensing is an essential functionality for cognitive radio networks. It enables cognitive radios to detect spectral holes over a wideband channel and to opportunistically use under-utilized frequency bands without causing harmful interference to primary networks. However, most of the work on wideband spectrum sensing presented in the literature employ the Nyquist sampling which requires very high sampling rates and acquisition costs. In this paper, a new wideband spectrum sensing algorithm based on compressed sensing theory is presented. The proposed method gives an effective sparse signal representation method for the wideband spectrum sensing problem. Thus, the presented method can effectively detect all spectral holes by finding the sparse coefficients. At the same time, the signal sampling rate and acquisition costs can be substantially reduced by using the compressive sampling technique. Simulation results testify the effectiveness of the proposed approach even in low signal-to-noise (SNR) cases.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133