全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evaluation of blood-brain barrier transport and CNS drug metabolism in diseased and control brain after intravenous L-DOPA in a unilateral rat model of Parkinson's disease

DOI: 10.1186/2045-8118-9-4

Keywords: Population pharmacokinetic modelling, Parkinson's disease, rat rotenone model, BBB transport, L-DOPA, microdialysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

In Lewis rats, at 14 days after unilateral infusion of rotenone into the medial forebrain bundle, L-DOPA was administered intravenously (10, 25 or 50 mg/kg). Serial blood samples and brain striatal microdialysates were analysed for L-DOPA, and the dopamine metabolites DOPAC and HVA. Ex-vivo brain tissue was analyzed for changes in tyrosine hydroxylase staining as a biomarker for Parkinson's disease severity. Data were analysed by population pharmacokinetic analysis (NONMEM) to compare BBB transport of L-DOPA in conjunction with the conversion of L-DOPA into DOPAC and HVA, in control and diseased cerebral hemisphere.Plasma pharmacokinetics of L-DOPA could be described by a 3-compartmental model. In rotenone responders (71%), no difference in L-DOPA BBB transport was found between diseased and control cerebral hemisphere. However, in the diseased compared with the control side, basal microdialysate levels of DOPAC and HVA were substantially lower, whereas following L-DOPA administration their elimination rates were higher.Parkinson's disease-like pathology, indicated by a huge reduction of tyrosine hydroxylase as well as by substantially reduced levels and higher elimination rates of DOPAC and HVA, does not result in changes in BBB transport of L-DOPA. Taking the results of this study and that of previous ones, it can be concluded that changes in BBB functionality are not a specific characteristic of Parkinson's disease, and cannot account for the decreased benefit of L-DOPA at later stages of Parkinson's disease.Tyrosine is usually considered as the starting point in the biosynthesis of dopamine (DA). It is taken up into the brain and subsequently from brain extracellular fluid into dopaminergic neurons where its is converted to 3,4-dihydroxyphenylalanine (L-DOPA), by tyrosine hydroxylase (TH). Aromatic amino acid decarboxylase (AADC) then converts L-dopa to DA and stored in vesicles for neurotransmission [1]. Dopamine is metabolized outside the vesicles where monoam

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133