全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PIER M  2013 

Adaptive Detection in Compound-Gaussian Clutter with Inverse Gaussian Texture

DOI: 10.2528/PIERM12121209

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper mainly deals with the detection problem of the target in the presence of the Compound-Gaussian (CG) distribution clutter with the unknown Power Spectral Density (PSD). Traditionally, the CG distributions, in particular the K distribution and the complex multivariate distribution, are the widely used models for the clutter measurements from the High Resolution (HR) radars. Recently, the CG distribution with the Inverse Gaussian (IG) texture, the specific class of CG clutter, is represented as the IG-CG distribution and validated to provide the better fit with the recorded clutter data than the mentioned two competitors. Within the IG-CG framework, the detector is here proposed in terms of the two-step Generalized Likelihood Ratio Test (GLRT) criterion, and the empirical estimation method is resorted to estimate the unknown PSD in order to adapt the realistic scenario. The proposed detector is tested on the real-life IPIX radar data, in comparison with the existing Adaptive Normalized Matched Filter (ANMF) processor, and the detection results illustrate that it outperforms ANMF.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133