Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS).
References
[1]
Jensen, JR. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2007.
[2]
Kerr, JT; Ostrovsky, M. From space to species: Ecological applications for remote sensing. Trends Ecol. Evol?2003, 18, 299–305, doi:10.1016/S0169-5347(03)00071-5.
[3]
Turner, W; Spector, S; Gardiner, N; Fladeland, M; Sterling, E; Steininger, M. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol?2003, 18, 306–314, doi:10.1016/S0169-5347(03)00070-3.
[4]
Chambers, JQ; Robertson, AL; Carneiro, VMC; Lima, AJN; Smith, ML; Plourde, LC; Higuchi, N. Hyperspectral remote detection of niche partitioning among canopy trees driven by blowdown gap disturbances in the Central Amazon. Oecologia?2009, 160, 107–117, doi:10.1007/s00442-008-1274-9. 19194726
[5]
Collingwood, A; Franklin, SE; Guo, X; Stenhouse, G. A medium-resolution remote sensing classification of agricultural areas in Alberta grizzly bear habitat. Can. J. Remote Sens?2009, 35, 23–36, doi:10.5589/m08-076.
[6]
McDermid, G; McLane, A; Collingwood, A; Hird, J; Faraguna, A; Laskin, D; Linke, J; Cranston, J; Guo, X; Franklin, S. Remote sensing mapping and research update. In Foothills Research Institute Grizzly Bear Program 2007 Annual Report; Stenhouse, G, Graham, K, Eds.; Foothills Research Institute: Hinton, AB, Canada, 2008.
[7]
Imam, E; Kushwaha, SPS; Singh, A. Evaluation of suitable tiger habitat in Chandoli National Park, India, using multiple logistic regression. Ecol. Model?2009, 220, 3621–3629, doi:10.1016/j.ecolmodel.2009.06.044.
[8]
Tagesson, T; Eklundh, L; Lindroth, A. Applicability of leaf area index products for boreal regions of Sweden. Int. J. Remote Sens?2009, 30, 5619–5632, doi:10.1080/01431160802695709.
[9]
Pellikka, PKE; Lotjonen, M; Sijander, M; Lens, L. Airborne remote sensing of spatiotemporal change (1955–2004) in indigenous and exotic forest cover in the Taita Hills, Kenya. Int. J. Appl. Earth Obs. Geoinf?2009, 11, 221–232, doi:10.1016/j.jag.2009.02.002.
[10]
Nagendra, H. Using remote sensing to assess biodiversity. Int. J. Remote Sens?2001, 22, 2377–2400, doi:10.1080/01431160117096.
Fassnacht, KS; Cohen, WB; Spies, TA. Key issues in making and using satellite-based maps in ecology: A primer. For. Ecol. Manage?2006, 222, 167–181, doi:10.1016/j.foreco.2005.09.026.
[13]
Duro, DC; Coops, NC; Wulder, MA; Han, T. Development of a large area biodiversity monitoring system driven by remote sensing. Prog. Phys. Geogr?2007, 31, 235–260, doi:10.1177/0309133307079054.
[14]
Gillespie, TW; Foody, GM; Rocchini, D; Giorgi, AP; Saatchi, S. Measuring and modeling biodiversity from space. Prog. Phys. Geogr?2008, 32, 203–221.
[15]
Toutin, T. Fine spatial resolution optical sensors. In The SAGE Handbook of Remote Sensing; Warner, TA, Nellis, MD, Foody, GM, Eds.; SAGE Publications Ltd: London, UK, 2009; pp. 109–122.
[16]
Wabnitz, CC; Andrefouet, S; Torres-Pulliza, D; Muller-Karger, FE; Kramer, PA. Regional-scale seagrass habitat mapping in the Wider Caribbean region using Landsat sensors: Applications to conservation and ecology. Remote Sens. Environ?2008, 112, 3455–3467, doi:10.1016/j.rse.2008.01.020.
[17]
Nagendra, H; Rocchini, D. High resolution satellite imagery for tropical biodiversity studies: The devil is in the detail. Biodivers. Conserv?2008, 17, 3431–3442, doi:10.1007/s10531-008-9479-0.
[18]
Morales, RM; Miura, T; Idol, T. An assessment of Hawaiian dry forest condition with fine resolution remote sensing. For. Ecol. Manage?2008, 255, 2524–2532, doi:10.1016/j.foreco.2008.01.049.
[19]
Perotto-Baldivieso, HL; Melendez-Ackerman, E; Garcia, MA; Leimgruber, P; Cooper, SM; Martinez, A; Calle, P; Ramos Gonzales, OM; Quinones, M; Christen, CA; Pons, G. Spatial distribution, connectivity, and the influence of scale: habitat availability for the endangered Mona Island rock iguana. Biodivers. Conserv?2009, 18, 905–917, doi:10.1007/s10531-008-9520-3.
[20]
Gulgun, B; Turkyilmaz, B; Bolca, M; Ozen, F. An examination of the effects of land use changes on nature conservation rulings in Cesme peninsula, Turkey. Environ. Monit. Assess?2009, 151, 457–476, doi:10.1007/s10661-008-0289-3. 18484188
[21]
Mellin, C; Andrefouet, S; Kulbicki, M; Dalleau, M; Vigliola, L. Remote sensing and fish-habitat relationships in coral reef ecosystems: Review and pathways for systematic multi-scale hierarchical research. Mar. Pollut. Bull?2009, 58, 11–19, doi:10.1016/j.marpolbul.2008.10.010. 19058817
[22]
Harborne, AR; Mumby, PJ; Kappel, CV; Dahlgren, CP; Micheli, F; Holmes, KE; Brumbaugh, DR. Tropical coastal habitats as surrogates of fish community structure, grazing, and fisheries value. Ecol. Appl?2008, 18, 1689–1701, doi:10.1890/07-0454.1. 18839764
[23]
Shippert, P. Why use hyperspectral imagery? Photogramm. Eng. Remote Sens?2004, 70, 377–380.
[24]
Goward, SN; Arvidson, T; Williams, DL; Irish, R; Irons, JR. Moderate spatial resolution optical sensors. In The SAGE Handbook of Remote Sensing; Warner, TA, Nellis, MD, Foody, GM, Eds.; SAGE Publications Ltd: London, UK, 2009; pp. 123–138.
[25]
Campbell, JB. Introduction to Remote Sensing, 4th ed ed.; Guilford Press: New York, NY, USA, 2007.
[26]
Pearlman, J; Carman, S; Segal, C; Jarecke, P; Barry, P; Browne, W. Overview of the Hyperion imaging spectrometer for the NASA EO-1 mission. 2001. Available online: http://eo1.gsfc.nasa.gov/new/validationReport/Technology/TRW_EO1%20Papers_Presentations/19.pdf (accessed on 13 January 2010).
[27]
Guerschman, JP; Hill, MJ; Renzullo, LJ; Barrett, DJ; Marks, AS; Botha, EJ. Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors. Remote Sens. Environ?2009, 113, 928–945, doi:10.1016/j.rse.2009.01.006.
[28]
Bannari, A; Khurshid, KS; Staenz, K; Schwarz, J. Potential of Hyperion EO-1 hyperspectral data for wheat crop chlorophyll content estimation. Can. J. Remote Sens?2008, 34, S139–157, doi:10.5589/m08-001.
[29]
Walsh, SJ; McCleary, AL; Mena, CF; Shao, Y; Tuttle, JP; Gonzalez, A; Atkinson, R. QuickBird and Hyperion data analysis of an invasive plant species in the. Galapagos Islands of Ecuador: Implications for control and land use management. Remote Sens. Environ?2008, 112, 1927–1941, doi:10.1016/j.rse.2007.06.028.
[30]
Lee, Z; Casey, B; Arnone, R; Weidemann, A; Parsons, R; Montes, MJ; Gao, BC; Goode, W; Davis, CO; Dye, J. Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform. J. Appl. Remote Sens?2007, 1, 011502, doi:10.1117/1.2822610.
[31]
Keramitsoglou, I; Kontoes, C; Sykioti, O; Sifakis, N; Xofis, P. Reliable, accurate and timely forest mapping for wildfire management using ASTER and Hyperion satellite imagery. For. Ecol. Manage?2008, 255, 3556–3562, doi:10.1016/j.foreco.2008.01.077.
[32]
Foster, JR; Townsend, PA; Zganjar, CE. Spatial and temporal patterns of gap dominance by low-canopy lianas detected using EO-1 Hyperion and Landsat Thematic Mapper. Remote Sens. Environ?2008, 112, 2104–2117, doi:10.1016/j.rse.2007.07.027.
[33]
Pignatti, S; Cavalli, RM; Cuomo, V; Fusilli, L; Pascucci, S; Poscolieri, M; Santini, F. Evaluating Hyperion capability for land cover mapping in a fragmented ecosystem: Pollino National Park, Italy. Remote Sens. Environ?2009, 113, 622–634, doi:10.1016/j.rse.2008.11.006.
[34]
Twele, A; Erasmi, S; Kappas, M. Spatially explicit estimation of leaf area index using EO-1 Hyperion and Landsat ETM+ data: implications of spectral bandwidth and shortwave infrared data on prediction accuracy in a tropical montane environment. GISci. Remote Sens?2008, 45, 229–248, doi:10.2747/1548-1603.45.2.229.
[35]
Walsh, SJ; Shao, Y; Mena, CF; McCleary, AL. Integration of Hyperion satellite data and a household social survey to characterize the causes and consequences of reforestation patterns in the northern Ecuadorian Amazon. Photogramm. Eng. Remote Sens?2008, 74, 725–735.
[36]
Canada Centre for Remote Sensing. Fundamentals of Remote Sensing: A Canada Center for Remote Sensing Remote Sensing Tutorial, 2007. Available online: http://ccrs.nrcan.gc.ca/resource/tutor/fundam/pdf/fundamentals_e.pdf (accessed on 03 January 2010).
[37]
Quattrochi, DA; Luvall, JC. Thermal remote sensing in Earth science research. In The SAGE Handbook of Remote Sensing; Warner, TA, Nellis, MD, Foody, GM, Eds.; SAGE Publications Ltd: London, UK, 2009; pp. 64–78.
[38]
Gillies, R; Temesgen, B. Coupling thermal infrared and visible satellite measurements to infer biophysical variables at the land surface. In Thermal Remote Sensing in Lands Surface Processes; Quattrochi, DA, Luvall, JC, Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 160–184.
[39]
Mildrexler, DJ; Zhao, MS; Heinsch, FA; Running, SW. A new satellite-based methodology for continental-scale disturbance detection. Ecol. Appl?2007, 17, 235–250, doi:10.1890/1051-0761(2007)017[0235:ANSMFC]2.0.CO;2. 17479848
Petropoulos, G; Carlson, TN; Wooster, MJ; Islam, S. A review of Ts/VI remote sensing based methods for the retrieval of land surface energy fluxes and soil surface moisture. Prog. Phys. Geogr?2009, 33, 224–250, doi:10.1177/0309133309338997.
[42]
Xue, Y; Li, Y; Guang, J; Zhang, X; Guo, J. Small satellite remote sensing and applications––History, current and future. Int. J. Remote Sens?2008, 29, 4339–4372, doi:10.1080/01431160801914945.
[43]
Kramer, HJ; Cracknell, AP. An overview of small satellites in remote sensing. Int. J. Remote Sens?2008, 29, 4285–4337, doi:10.1080/01431160801914952.
[44]
Wang, K; Franklin, SE; Guo, X; He, Y; McDermid, GJ. Problems in remote sensing of landscapes and habitats. Prog. Phys.Geogr?2009, 33, 747–768, doi:10.1177/0309133309350121.
[45]
Wang, X; Wang, G; Guan, Y; Chen, Q; Gao, L. Small satellite constellation for disaster monitoring in China. Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium, Seoul, Korea, 25–29 July 2005; pp. 467–469.
[46]
Qian, YG; Yan, GJ; Duan, SB; Kong, XS. A contextual fire detection algorithm for simulated HJ-1B imagery. Sensors?2009, 9, 961–979. 22399950
[47]
Lim, K; Treitz, P; Wulder, M; St-Onge, B; Flood, M. LiDAR remote sensing of forest structure. Prog. Phys. Geogr?2003, 27, 88–106, doi:10.1191/0309133303pp360ra.
[48]
Hyyppa, J; Wagner, W; Hollaus, M; Hyyppa, H. Airborne laser scanning. In The SAGE Handbook of Remote Sensing; Warner, TA, Nellis, MD, Foody, GM, Eds.; SAGE Publications Ltd: London, UK, 2009; pp. 199–211.
[49]
Wehr, A; Lohr, U. Airborne laser scanning––An introduction and overview. ISPRS J. Photogramm. Remote Sens?1999, 54, 68–82, doi:10.1016/S0924-2716(99)00011-8.
[50]
Miller, SB. Photogrammetric Products. In Manual of Photogrammetry, 5th ed; McGlone, J, Ed.; ASPRS: Bethesda, MD, USA, 2004; pp. 983–1013.
Goetz, S; Steinberg, D; Dubayah, R; Blair, B. Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA. Remote Sens Environ?2007, 108, 254–263, doi:10.1016/j.rse.2006.11.016.
[54]
Duncanson, LI; Niemann, KO; Wulder, MA. Estimating forest canopy height and terrain relief from GLAS waveform metrics. Remote Sens. Environ?2010, 114, 138–145, doi:10.1016/j.rse.2009.08.018.
[55]
Lefsky, MA; Keller, M; Pang, Y; de Camargo, PB; Hunter, MO. Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms. J. Appl. Remote Sens?2007, 1, 013537, doi:10.1117/1.2795724.
[56]
Simard, M; Rivera-Monroy, VH; Mancera-Pineda, JE; Castaneda-Moya, E; Twilley, RR. A systematic method for 3D mapping of mangrove forests based on Shuttle Radar Topography Mission elevation data, ICEsat/GLAS waveforms and field data: Application to Cienaga Grande de Santa Marta, Colombia. Remote Sens. Environ?2008, 112, 2131–2144, doi:10.1016/j.rse.2007.10.012.
[57]
Pflugmacher, D; Cohen, W; Kennedy, R; Lefsky, M. Regional applicability of forest height and aboveground biomass models for the Geoscience Laser Altimeter System. For. Sci?2008, 54, 647–657.
[58]
Helmer, EH; Lefsky, MA; Roberts, DA. Biomass accumulation rates of Amazonian secondary forest and biomass of old-growth forests from Landsat time series and the Geoscience Laser Altimeter System. J. Appl. Remote Sens?2009, 3, 033505, doi:10.1117/1.3082116.
Jensen, JR; Im, J; Hardin, P; Jensen, RR. Image classification. In The SAGE Handbook of Remote Sensing; Warner, TA, Nellis, MD, Foody, GM, Eds.; SAGE Publications Ltd: London, UK, 2009; pp. 269–281.
[61]
Huang, C; Davis, LS; Townshend, JR. An assessment of support vector machines for land cover classification. Int. J. Remote Sens?2002, 23, 725–749, doi:10.1080/01431160110040323.
[62]
Foody, GM; Mathur, A. The use of small training sets containing mixed pixels for accurate hard image classification: training on mixed spectral responses for classification by a SVM. Remote Sens. Environ?2006, 103, 179–189, doi:10.1016/j.rse.2006.04.001.
[63]
Foody, GM; Mathur, A. A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Remote Sens?2004, 42, 1335–1343, doi:10.1109/TGRS.2004.827257.
[64]
Dalponte, M; Bruzzone, L; Vescovo, L; Gianelle, D. The role of spectral resolution and classifier complexity in the analysis of hyperspectral images of forest areas. Remote Sens. Environ?2009, 113, 2345–2355, doi:10.1016/j.rse.2009.06.013.
[65]
Ichii, K; Wang, WL; Hashimoto, H; Yang, FH; Votava, P; Michaelis, AR; Nemani, RR. Refinement of rooting depths using satellite-based evapotranspiration seasonality for ecosystem modeling in California. Agric. For. Meteorol?2009, 149, 1907–1918, doi:10.1016/j.agrformet.2009.06.019.
[66]
Sanchez-Hernandez, C; Boyd, DS; Foody, GM. One-class classification for mapping a specific land-cover class: SVDD classification of fenland. IEEE Trans. Geosci. Remote Sens?2007, 45, 1061–1073, doi:10.1109/TGRS.2006.890414.
[67]
Sanchez-Hernandez, C; Boyd, DS; Foody, GM. Mapping specific habitats from remotely sensed imagery: support vector machine and support vector data description based classification of coastal saltmarsh habitats. Ecol. Inform?2007, 2, 83–88, doi:10.1016/j.ecoinf.2007.04.003.
[68]
Benz, UC; Hofmann, P; Willhauck, G; Lingenfelder, I; Heynen, M. Multiresolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens?2004, 58, 239–258, doi:10.1016/j.isprsjprs.2003.10.002.
[69]
Definiens AG. Definiens Developer 7–user guide, 2008. Available online: http://www.definiens.com/definiens-support-services_187_11_14.html (accessed on 14 July 2009).
[70]
Lu, D; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens?2007, 28, 823–870, doi:10.1080/01431160600746456.
[71]
Rocchini, D; Ricotta, C. Are landscapes as crisp as we may think? Ecol. Model?2007, 204, 535–539, doi:10.1016/j.ecolmodel.2006.12.028.
[72]
Lu, D; Weng, Q. Spectral mixture analysis of ASTER images for examining the relationship between urban thermal features and biophysical descriptors in Indianapolis, Indiana, USA. Remote Sens. Environ?2006, 104, 157–167, doi:10.1016/j.rse.2005.11.015.
[73]
Plourde, LC; Ollinger, SV; Smith, ML; Martin, ME. Estimating species abundance in a northern temperate forest using spectral mixture analysis. Photogramm. Eng. Remote Sens?2007, 73, 829–840.
Schlerf, M; Atzberger, C; Hill, J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sens. Environ?2005, 95, 177–194, doi:10.1016/j.rse.2004.12.016.
[76]
Huete, AR; Liu, H. An error and sensitivity analysis of the atmospheric and soil-correcting variants of the NDVI for the MODIS-EOS. IEEE Trans. Geosci. Remote Sens?1994, 34, 897–905.
[77]
Haboudane, D; Miller, JR; Pattery, E; Zarco-Tejad, PJ; Strachan, IB. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens. Environ?2004, 90, 337–352, doi:10.1016/j.rse.2003.12.013.
[78]
Serbin, G; Daughtry, CST; Hunt, ER; Brown, DJ; McCarty, GW. Effect of soil spectral properties on remote sensing of crop residue cover. Soil Sci. Soc. Am. J?2009, 73, 1545–1558, doi:10.2136/sssaj2008.0311.
[79]
Kraus, T; Schmidt, M; Dech, SW; Samimi, C. The potential of optical high resolution data for the assessment of leaf area index in East African rainforest ecosystems. Int. J. Remote Sens?2009, 30, 5039–5059, doi:10.1080/01431160903022878.
[80]
Wang, C; Qi, J; Cochrane, M. Assessment of tropical forest degradation with canopy fractional cover from Landsat ETM plus and IKONOS imagery. Earth Interac?2005, 9, 1–18.
[81]
Gitelson, AA. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol?2004, 161, 165–173, doi:10.1078/0176-1617-01176. 15022830
[82]
Zhang, L; Furumi, S; Muramatsu, K; Fujiwara, N; Daigo, M; Zhang, L. A new vegetation index based on the universal pattern decomposition method. Int. J. Remote Sens?2007, 28, 107–124, doi:10.1080/01431160600857402.
[83]
Ji, L; Peters, AJ. Performance evaluation of spectral vegetation indices using a statistical sensitivity function. Remote Sens. Environ?2007, 106, 59–65, doi:10.1016/j.rse.2006.07.010.
[84]
Boyd, DS; Danson, FM. Satellite remote sensing of forest resources: Three decades of research development. Prog. Phys.Geogr?2005, 29, 1–26.
[85]
Liang, S. Recent developments in estimating land surface biogeographysical variables from optical remote sensing. Prog. Phys.Geogr?2007, 31, 501–516, doi:10.1177/0309133307084626.
[86]
Liang, S. Quantitative models and inversion in optical remote sensing. In The SAGE Handbook of Remote Sensing; Warner, TA, Nellis, MD, Foody, GM, Eds.; SAGE Publications Ltd: London, UK, 2009; pp. 64–78.
[87]
Park, MH; Stenstrom, MK. Using satellite imagery for stormwater pollution management with Bayesian networks. Water Res?2006, 40, 3429–3438, doi:10.1016/j.watres.2006.06.041. 16956642
[88]
Di Vittorio, AV. Enhancing a leaf radiative transfer model to estimate concentrations and in vivo specific absorption coefficients of total carotenoids and chlorophylls a and b from single-needle reflectance and transmittance. Remote Sens. Environ?2009, 113, 1948–1966, doi:10.1016/j.rse.2009.05.002.
[89]
Koetza, B; Baret, F; Poilve, H; Hill, J. Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics. Remote Sens. Environ?2005, 95, 115–124, doi:10.1016/j.rse.2004.11.017.
[90]
Migliavacca, M; Meroni, M; Busetto, L; Colombo, R; Zenone, T; Matteucci, G; Manca, G; Seufert, G. Modeling gross primary production of agro-forestry ecosystems by assimilation of satellite-derived information in a process-based model. Sensors?2009, 9, 922–942. 22399948
[91]
Hilker, T; Wulder, MA; Coops, NC; Linke, J; McDermid, G; Masek, JG; Gao, F; White, JC. A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens. Environ?2009, 113, 1613–1627, doi:10.1016/j.rse.2009.03.007.
[92]
Pohl, C; van Genderen, JL. Multisensor image fusion in remote sensing: concepts, methods and applications. Int. J. Remote Sens?1998, 19, 823–854, doi:10.1080/014311698215748.
[93]
Gamba, P; Chanussot, J. Guest editorial: Foreword to the special issue on data fusion. IEEE Trans. Geosci. Remote Sens?2008, 46, 1283–1288, doi:10.1109/TGRS.2008.919761.
Dong, J; Zhuang, D; Huang, Y; Fu, J. Advance in multi-sensor data fusion: algorithms and applications. Sensors?2009, 9, 7771–7784, doi:10.3390/s91007771. 22408479
[96]
Dong, J; Yang, X; Clinton, N; Wang, N. An artificial network model for estimating crop yields using remotely sensed information. Int. J. Remote Sens?2004, 25, 1723–1732, doi:10.1080/0143116031000150068.
[97]
Waske, B; van der Linden, S. Classifying multilevel imagery from SAR and optical sensors by decision fusion. IEEE Trans. Geosci. Remote Sens?2008, 46, 1457–1466, doi:10.1109/TGRS.2008.916089.
[98]
Hong, G; Zhang, Y; Mercer, B. A wavelet and IHS integration method to fuse high resolution SAR with moderate resolution multispectral images. Photogramm. Eng. Remote Sens?2009, 75, 1213–1223.
[99]
Wunderle, AL; Franklin, SE; Guo, X. Age class estimation of western red cedar using SPOT-5 pan-sharpened imagery in British Columbia, Canada. Geocarto Int?2009, 24, 47–63, doi:10.1080/10106040801950559.
[100]
Huang, SL; Crabtree, RL; Potter, C; Gross, P. Estimating the quantity and quality of coarse woody debris in Yellowstone post-fire forest ecosystem from fusion of SAR and optical data. Remote Sens. Environ?2009, 113, 1926–1938, doi:10.1016/j.rse.2009.05.001.
[101]
Souza, PWM; Goncalves, FD; Rodrigues, SWP; Costa, FR; Miranda, FP. Multi-sensor data fusion for geomorphological and environmental sensitivity index mapping in the Amazonian mangrove coast, Brazil. J. Coast. Res?2009, 2, 1529–1596.
Hinton, JC. GIS and remote sensing integration for environmental applications. Int. J. Geogr. Inf. Sci?1996, 10, 877–890.
[104]
Merchant, JW; Narumalani, S. Integrating remote sensing and geographic information systems. In The SAGE Handbook of Remote Sensing; Warner, TA, Nellis, MD, Foody, GM, Eds.; SAGE Publications Ltd: London, UK, 2009; pp. 257–268.
[105]
Aronoff, S. Remote sensing for GIS managers; ESRI Press: Redlands, CA, USA, 2005.
[106]
Ehlers, M; Edwards, G; Bedard, Y. Integration of remote sensing with geographic information systems: a necessary evolution. Photogramm. Eng. Remote Sens?1989, 55, 1619–1627.
[107]
Gao, J. Integration of GPS with remote sensing and GIS: reality and prospect. Photogramm. Eng. Remote Sens?2002, 68, 447–453.
[108]
Briggs, NA; Sader, SA. Tracking forest change and development using low-cost remote sensing imagery and GIS integration. North. J. Appl. For?2009, 26, 148–155.
[109]
Giriraj, A; Murthy, MSR; Ramesh, BR; Dutt, CBS. A method for assessing evergreen habitats using phytodiversity and geospatial techniques in tropical rain forests of Southern Western Ghats (India). Ecol. Res?2009, 24, 749–760, doi:10.1007/s11284-008-0547-4.
[110]
Dong, X; Liu, L; Wang, J; Shi, J; Pan, JH. Analysis of the landscape change at river basin scale based on SPOT and TM fusion remote sensing images: A case study of the Weigou River Basin on the Chinese Loess Plateau. Int. J. Earth Sci?2009, 98, 651–664, doi:10.1007/s00531-007-0271-2.
[111]
Chowdary, VM; Ramakrishnan, D; Srivastava, YK; Chandran, V; Jeyaram, A. Integrated water resource development plan for sustainable management of Mayurakshi watershed, India using remote sensing and GIS. Water Resour. Manag?2009, 23, 1581–1502, doi:10.1007/s11269-008-9342-9.
[112]
Kurnaz, S; Salahova, S; Rustamov, RB; Zeynalova, M. River inundation impact reduction based on space technology application. Proceedings of the 4th International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, June 2009; pp. 265–272.
[113]
Jasrotia, AS; Majhi, A; Singh, S. Water balance approach for rainwater harvesting using remote sensing and GIS techniques, Jammu Himalaya, India. Water Resour. Manag?2009, 23, 3035–3055, doi:10.1007/s11269-009-9422-5.
[114]
Blaschke, T; Strobl, J. What's wrong with pixels? Some recent developments interfacing remote sensing and GIS. GIS-Zeitschrift für Geoinformationssysteme?2001, 14, 12–17.
[115]
Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens?2010, 62, 2–16.