Biosensors have been used extensively in the scientific community for several purposes, most notably to determine association and dissociation kinetics, protein-ligand, protein-protein, or nucleic acid hybridization interactions. A number of different types of biosensors are available in the field, each with real or perceived benefits over the others. This review discusses the basic theory and operational arrangements of four commercially available types of optical biosensors: surface plasmon resonance, resonant mirror, resonance waveguide grating, and dual polarization interferometry. The different applications these techniques offer are discussed from experiments and results reported in recently published literature. Additionally, recent advancements or modifications to the current techniques are also discussed.
References
[1]
Shankaran, DR; Gobi, KV; Miura, N. Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens. Actuator. B?2007, 121, 158–177, doi:10.1016/j.snb.2006.09.014.
[2]
Son, JR; Kim, G; Kothapalli, A; Morgan, MT; Ess, D. Detection of Salmonella enteritidis using a miniature optical surface plasmon resonance biosensor. J. Phys. Conf. Ser?2007, 61, 1086–1090, doi:10.1088/1742-6596/61/1/215.
[3]
Soelberg, SD; Chinowsky, T; Geiss, G; Spinelli, CB; Stevens, R; Near, S; Kauffman, P; Yee, S; Furlong, CE. A portable surface plasmon resonance sensor system for real-time monitoring of small to large analytes. J. Ind. Microbiol. Biotechnol?2005, 32, 669–674, doi:10.1007/s10295-005-0044-5. 16283397
[4]
Miroslav, P; Petr, S; Michal, K. Biosensors for biological warfare agent detection. Def. Sci. J?2007, 57, 185–193.
[5]
Bhatta, D; Stadden, E; Hashem, E; Sparrow, IJG; Emmerson, GD. Multi-purpose optical biosensors for real-time detection of bacteria, viruses and toxins. Sens. Actuator. B?2010, 149, 233–238, doi:10.1016/j.snb.2010.05.040.
[6]
Lillis, B; Manning, M; Berney, H; Hurley, E; Mathewson, A; Sheehan, MM. Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support. Biosens. Bioelectron?2006, 21, 1459–1467, doi:10.1016/j.bios.2005.06.009. 16112566
[7]
Cooper, MA. Optical biosensors in drug discovery. Nat. Rev. Drug Discov?2002, 1, 515–528, doi:10.1038/nrd838. 12120258
[8]
Karlsson, R. SPR for molecular interaction analysis: A review of emerging application areas. J. Mol. Recognit?2004, 17, 151–161, doi:10.1002/jmr.660. 15137023
[9]
Boozer, C; Kim, G; Cong, S; Guan, H; Londergan, T. Looking towards label-free biomolecular interaction analysis in a high-throughput format: A review of new surface plasmon resonance technologies. Curr. Opin. Biotechnol?2006, 17, 400–405, doi:10.1016/j.copbio.2006.06.012. 16837183
Liu, Z; Tabakman, S; Welsher, K; Dai, H. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res?2009, 2, 85–120, doi:10.1007/s12274-009-9009-8. 20174481
[14]
Fan, X; White, IM; Shopova, SI; Zhu, H; Suter, J; Sun, Y. Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta?2008, 620, 8–26, doi:10.1016/j.aca.2008.05.022. 18558119
[15]
Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. A Hadrons Nucl?1968, 216, 398–410.
Novotny, L; Hecht, B. Principles of Nano-Optics; Cambridge University Press: Cambridge, UK, 2006; pp. 378–393.
[18]
Homola, J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem?2003, 377, 528–539, doi:10.1007/s00216-003-2101-0. 12879189
[19]
Kretschmann, E. The determination of the optical constants of metals by excitation of surface plasmons. Z. Phys?1971, 241, 313–324, doi:10.1007/BF01395428.
Homola, J; Ctyroky, J; Skalsky, M; Hradilova, J; Kolaravo, P. A surface plasmon resonance based integrated optical sensor. Sens Actuator B?1997, 38–39, 286–290.
[24]
Piliarik, M; Homola, J. Surface plasmon resonance (SPR) sensors: Approaching their limits? Opt. Express?2009, 17, 16505–16517, doi:10.1364/OE.17.016505. 19770865
[25]
Jung, LS; Nelson, KE; Stayton, PS; Campbell, CT. Binding and dissociation kinetics of wild-type and mutant streptavidins on mixed biotin-containing alkylthiolate monolayers. Langmuir?2000, 16, 9421–9432, doi:10.1021/la000144r.
[26]
Karlsson, R; Falt, A. Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J. Immunol. Method?1997, 200, 121–133, doi:10.1016/S0022-1759(96)00195-0.
[27]
Moon, S; Kim, DJ; Kim, K; Kim, D; Lee, H; Lee, K; Haam, S. Surface-enhance plasmon resonance detection of nanoparticle-conjugated DNA hybridization. Appl. Opt?2010, 49, 484–491, doi:10.1364/AO.49.000484. 20090815
[28]
Johnsson, B; Lofas, S; Lindquist, G. Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal. Biochem?1991, 198, 268–277, doi:10.1016/0003-2697(91)90424-R. 1724720
[29]
Schaferling, M; Riepl, M; Pavlickova, P; Paul, H; Kambhampati, D; Liedberg, B. Functionalized self-assembled monolayers on gold as binding matrices for the screening of antibody-antigen interactions. Microchim. Acta?2003, 142, 193–203, doi:10.1007/s00604-003-0018-0.
[30]
Rusmini, F; Zhong, Z; Feijen, J. Protein immobilization strategies for protein biochips. Biomacromolecules?2007, 8, 1775–1789, doi:10.1021/bm061197b. 17444679
[31]
Lee, JW; Sim, SJ; Cho, SM; Lee, J. Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface plasmon resonance for detecting anti-GAD antibody. Biosens. Bioelectron?2005, 20, 1422–1427, doi:10.1016/j.bios.2004.04.017. 15590298
[32]
Lu, HB; Campbell, CT; Castner, DG. Attachment of functionalized poly(ethylene glycol) films to gold surfaces. Langmuir?2000, 16, 1711–1718, doi:10.1021/la990221m.
[33]
Fang, Y; Frutos, AG; Lahiri, J. Membrane protein microarrays. J. Am. Chem. Soc?2002, 124, 2394–2395, doi:10.1021/ja017346+. 11890761
[34]
Taylor, JD; Linman, MJ; Wilkop, T; Cheng, Q. Regenerable tethered bilayer lipid membrane arrays for multiplexed label-free analysis of lipid-protein interactions on poly(dimethylsiloxane) microchips using SPR imaging. Anal. Chem?2009, 81, 1146–1153, doi:10.1021/ac8023137. 19178341
[35]
Feizi, T; Fazio, F; Chai, W; Wong, CH. Carbohydrate microarrays—A new set of technologies at the frontiers of glycomics. Curr. Opin. Struct. Biol?2003, 13, 637–645, doi:10.1016/j.sbi.2003.09.002. 14568620
[36]
Wang, D. Carbohydrate microarrays. Proteomics?2003, 3, 2167–2175, doi:10.1002/pmic.200300601. 14595816
[37]
Nidumolu, BG; Urbina, MC; Hormes, J; Kumar, CSSR; Monroe, WT. Functionalization of gold and glass surfaces with magnetic nanoparticles using biomolecular interactions. Biotechnol. Prog?2006, 22, 91–95, doi:10.1021/bp050165h. 16454497
[38]
Daghestani, HN; Fernig, DG; Day, BW. Evaluation of biosensor surfaces for the detection of microtubule perturbation. Biosens. Bioelectron?2009, 25, 136–141, doi:10.1016/j.bios.2009.06.014. 19595587
[39]
Zhu, H; Bilgin, M; Hangham, R; Hall, D; Casamayor, A; Bertone, P; Lan, N; Jansen, R; Bidlinglaier, S; Houfek, T; Mitchell, T; Miller, P; Dean, RA; Gerstein, M; Snyder, M. Global analysis of protein activities using proteome chips. Science?2001, 293, 2101–2105, doi:10.1126/science.1062191. 11474067
[40]
Wegner, GJ; Lee, HJ; Marriott, G; Corn, RM. Fabrication of histidine-tagged fusion protein arrays for surface plasmon resonance imaging studies of protein-protein and protein-DNA interactions. Anal. Chem?2003, 75, 4740–4746, doi:10.1021/ac0344438. 14674449
[41]
Rothenhausler, B; Knoll, W. Surface-plasmon microscopy. Nature?1988, 332, 615–617, doi:10.1038/332615a0.
[42]
Jordan, CE; Frutos, AG; Thiel, AJ; Corn, RM. Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces. Anal. Chem?1997, 69, 4939–4947, doi:10.1021/ac9709763.
[43]
Bassil, N; Maillart, E; Canva, M; Levy, Y; Millot, MC; Pissard, S; Narwa, R; Goossens, M. One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalized surfaces applied to the detection of cystic fibrosis mutations. Sens. Actuator. B?2003, 94, 313–323, doi:10.1016/S0925-4005(03)00462-3.
[44]
Shumaker-Parry, JS; Aebersold, R; Campbell, CT. Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy. Anal. Chem?2004, 76, 2071–2082, doi:10.1021/ac035159j. 15053673
[45]
Piliarik, M; Vaisocherova, H; Homola, J. A new surface plasmon resonance sensor for high-throughput screening applications. Biosens. Bioelectron?2005, 20, 2104–2110, doi:10.1016/j.bios.2004.09.025. 15741081
Ohman, E; Nilsson, A; Maderia, A; Sjogren, B; Andren, PE; Svenningsson, P. Use of surface plasmon resonance coupled with mass spectrometry reveals an interaction between the voltage-gated sodium channel type X α-subunit and caveolin-1. J. Proteome Res?2008, 7, 5333–5338, doi:10.1021/pr800498t. 19367709
[50]
Nedelkov, D; Rasooly, A; Nelson, RW. Multitoxin biosensor-mass spectrometry analysis: A new approach for rapid, real-time, sensitive analysis or staphylococcal toxins in food. Int. J. Food Microbiol?2000, 60, 1–13, doi:10.1016/S0168-1605(00)00328-7. 11014517
[51]
Nedelkov, D; Nelson, RW. Detection of staphylococcal enterotoxin B via biomolecular interaction analysis mass spectrometry. Appl. Environ. Microbiol?2003, 69, 5212–5215, doi:10.1128/AEM.69.9.5212-5215.2003. 12957904
[52]
Borch, J; Roepstorff, P. Screening for enzyme inhibitors by surface plasmon resonance combined with mass spectrometry. Anal. Chem?2004, 76, 5243–5248, doi:10.1021/ac049335f. 15362879
Sonksen, CP; Nordhoff, E; Jansson, O; Malmqvist, M; Roepstorff, P. Combining MALDI mass spectrometry and biomolecular interaction analysis using a biomolecular interaction analysis instrument. Anal. Chem?1998, 70, 2731–2736, doi:10.1021/ac9800457. 9666738
[55]
Natsume, T; Nakayama, H; Jansson, O; Isobe, T; Takio, K; Mikoshiba, K. Combination of biomolecular interaction analysis and mass spectrometric amino acid sequencing. Anal. Chem?2000, 72, 4193–4198, doi:10.1021/ac000167a. 10994983
[56]
Annesley, TM. Ion suppression in mass spectrometry. Clin. Chem?2003, 49, 1041–1044, doi:10.1373/49.7.1041. 12816898
[57]
Wilson, DJ; Konermann, L. Ultrarapid desalting of protein solutions for electrospray mass spectrometry in a microchannel laminar flow device. Anal. Chem?2005, 77, 6887–6894, doi:10.1021/ac050902o. 16255586
[58]
Lukosz, W. Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing. Biosens. Bioelectron?1991, 6, 215–225, doi:10.1016/0956-5663(91)80006-J.
[59]
Nellen, PM; Lukosz, W. Model experiments with integrated optical input grating couplers as direct immunosensors. Biosens. Bioelectron?1991, 6, 517–525, doi:10.1016/0956-5663(91)85049-3. 1910672
[60]
Cush, R; Cronin, JM; Stewart, WJ; Maule, CH; Molloy, J; Goddard, NJ. The resonant mirror: A novel optical biosensor for direct sensing of biomolecular interactions. Part I: Principle of operation and associated instrumentation. Biosens. Bioelectron?1993, 8, 347–353, doi:10.1016/0956-5663(93)80073-X.
[61]
Buckle, PE; Davies, RJ; Kinning, T; Yeung, D; Edwards, PR; Pollard-Knight, D; Lowe, CR. The resonant mirror: A novel optical sensor for direct sensing of biomolecular interactions Part II: Applications. Biosens. Bioelectron?1993, 8, 355–363, doi:10.1016/0956-5663(93)80074-Y.
Benadie, Y; Deysel, M; Siko, DGR; Roberts, VV; Wyngaardt, SV; Thanyani, ST; Sekanka, G; ten Bokum, AMC; Collett, LA; Grooten, J; Baird, MS; Verschoor, JA. Cholesteroid nature of free mycolic acids from M. Tuberculosis. Chem. Phys. Lipids?2008, 152, 95–103, doi:10.1016/j.chemphyslip.2008.01.004. 18312856
[64]
Lemmer, Y; Thanyani, ST; Vrey, PJ; Driver, CHS; Venter, L; van Wyngaardt, S; ten Bokum, AMC; Ozoemena, KI; Pilcher, LA; Fernig, DG; Stoltz, AC; Swai, HS; Verschoor, JA. Detection of antimycolic acid antibodies by liposomal biosensors. Method. Enzymol?2009, 464, 79–104.
[65]
Wood, RW. Remarkable spectrum from a diffraction grating. Philos. Mag?1902, 4, 396–402.
[66]
Tiefenthaler, K; Lukosz, W. Grating couplers as integrated optical humidity and gas sensors. Thin Solid Films?1985, 126, 205–211, doi:10.1016/0040-6090(85)90312-8.
[67]
Teifenthaler, K; Lukosz, W. Sensitivity of grating couplers as integrated-optical chemical sensors. J. Opt. Soc. Am. B?1989, 6, 209–220, doi:10.1364/JOSAB.6.000209.
[68]
Cunningham, B; Li, P; Lin, B; Pepper, J. Colorimetric resonant reflection as a direct biochemical assay technique. Sens. Actuator. B?2002, 81, 316–328, doi:10.1016/S0925-4005(01)00976-5.
[69]
Cunningham, BT; Li, P; Schultz, S; Lin, B; Baird, C; Gerstenmaier, J; Genick, C; Wang, F; Fine, E; Laing, L. Label-free Assays on the BIND system. J. Biomol. Screen?2004, 9, 481–490, doi:10.1177/1087057104267604. 15452334
[70]
Fang, Y. Non-invasive optical biosensor for probing cell signaling. Sensors?2007, 7, 2316–2329, doi:10.3390/s7102316.
[71]
Fang, Y. Resonant waveguide grating biosensor for microarrays. In Optical Guided-wave Chemical and Biosensors II; Zourob, M, Lakhtakia, A, Eds.;. Springer Series on Chemical Sensors and Biosensors; Springer-Verlag: Berlin, Germany, 2010; Volume 8. Part 1,, pp. 27–42.
Lin, B; Qiu, J; Gerstenmeier, J; Li, P; Pien, H; Pepper, J; Cunningham, B. A label-free optical technique for detecting small molecule interactions. Biosens. Bioelectron?2002, 17, 827–834, doi:10.1016/S0956-5663(02)00077-5. 12191932
[74]
Li, PY; Lin, B; Gerstenmaier, J; Cunningham, BT. A new method for label-free imaging of biomolecular interactions. Sens. Actuator. B?2004, 99, 6–13, doi:10.1016/S0925-4005(03)00604-X.
[75]
Fang, Y; Ferrie, AM; Fontaine, NH; Mauro, J; Balakrishnan, J. Resonant waveguide grating biosensor for living cell sensing. Biophys. J?2006, 91, 1925–1940, doi:10.1529/biophysj.105.077818. 16766609
[76]
Xi, B; Yu, N; Wang, X; Xu, X; Abassi, YA. The application of cell-based label-free technology in drug discovery. Biotechnol. J?2008, 3, 484–495, doi:10.1002/biot.200800020. 18412175
[77]
Fang, Y; Ferrie, AM. Label-free optical biosensor for ligand-directed functional selectivity acting on β2 adrenoceptor in living cells. FEBS Lett?2008, 582, 558–564, doi:10.1016/j.febslet.2008.01.021. 18242178
[78]
Fang, Y. Label-free and non-invasive biosensor cellular assays for cell adhesion. J. Adhes. Sci. Technol?2010, 24, 1011–1021, doi:10.1163/016942409X12598231568267.
Cross, GH; Reeves, A; Brand, S; Swann, MJ; Peel, LL; Freeman, NJ; Lu, JR. The metrics of surface adsorbed small molecules on the Young’s fringe dual-slab waveguide interferometer. J. Phys. D Appl. Phys?2004, 37, 74–80, doi:10.1088/0022-3727/37/1/012.
[81]
Swann, M; Freeman, N; Carrington, S; Ronan, G; Barrett, P. Quantifying structural changes and stoichiometry of protein interactions using size and density profiling. Lett Pept Sci?2003, 10, 487–494, doi:10.1007/BF02442580.
[82]
Swann, MJ; Peel, LL; Carrington, S; Freeman, NJ. Dual-polarization interferometry: An analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions. Anal. Biochem?2004, 329, 190–198, doi:10.1016/j.ab.2004.02.019. 15158477
[83]
Brandenburg, A; Krauter, R; Kunzel, C; Stefan, M; Schulte, H. Interferometric sensor for detection of surface-bound bioreactions. Appl. Opt?2000, 39, 6396–6405, doi:10.1364/AO.39.006396. 18354653
[84]
Thompsett, AR; Brown, DR. Dual polarisation interferometry analysis of copper binding to the prion protein: Evidence for two folding states. Biochim. Biophys. Acta?2007, 1774, 920–927, doi:10.1016/j.bbapap.2007.05.007. 17573247
[85]
Sonesson, AW; Callisen, TH; Brismar, H; Elofsson, UM. Adsorption and activity of Thermomyces lanuginosus lipase on hydrophobic and hydrophilic surfaces measured with dual polarization interferometry (DPI) and confocal microscopy. Colloids Surf. B?2008, 61, 208–215, doi:10.1016/j.colsurfb.2007.08.005.
[86]
Popplewell, JF; Swann, MJ; Ahmed, Y; Turnbell, JE; Fernig, DG. Fabrication of carbohydrate surfaces by using nonderivatised oligosaccharides, and their application to measuring the assembly of sugar–protein complexes. Chem. Bio. Chem?2009, 10, 1218–1226, doi:10.1002/cbic.200800696. 19360804
Berney, H; Oliver, K. Dual polarization interferometry size and density characterization of DNA immobilisation and hybridisation. Biosens. Bioelectron?2005, 21, 618–626, doi:10.1016/j.bios.2004.12.024. 16202875
[90]
Lin, S; Lee, CK; Wang, YM; Huang, LS; Lin, YH; Lee, SY; Sheu, BC; Hsu, SM. Measurement of dimensions of pentagonal doughnut-shaped C-reactive protein using an atomic force microscope and a dual polarisation interferometric biosensor. Biosens Bioelectron?2006, 22, 323–327, doi:10.1016/j.bios.2006.01.018. 16510273
[91]
Terry, CJ; Popplewell, JF; Swann, MJ; Freeman, NJ; Fernig, DG. Characterisation of membrane mimetics on a dual polarisation interferometer. Biosens. Bioelectron?2006, 22, 627–632, doi:10.1016/j.bios.2006.01.021. 16530399
[92]
Popplewell, JF; Swann, MJ; Freeman, NJ; McDonnell, C; Ford, RC. Quantifying the effects of melittin on liposomes. Biochim. Biophys. Acta, Biomembr?2007, 1768, 13–20, doi:10.1016/j.bbamem.2006.05.016.
[93]
Mashaghi, A; Swann, M; Popplewell, J; Textor, M; Reimhult, E. Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study supported lipid bilayer formation kinetics. Anal. Chem?2008, 80, 3666–3676, doi:10.1021/ac800027s. 18422336
[94]
Lee, TH; Hall, KN; Swann, MJ; Popplewell, JF; Unabia, S; Park, Y; Hahm, KS; Aguilar, MI. The membrane insertion of helical antimicrobial peptides from the N-terminus of Helicobacter pylori ribosomal protein L1. Biochim. Biophys. Acta Biomembr?2010, 1798, 544–557, doi:10.1016/j.bbamem.2010.01.014.
[95]
Boudjemline, A; Clarke, DT; Freeman, NJ; Nicholson, JM; Jones, GR. Early stages of protein crystallization as revealed by emerging optical waveguide technology. J. Appl. Crystallogr?2008, 41, 523–530, doi:10.1107/S0021889808005098.
[96]
Wang, J; Coffey, PD; Swann, MJ; Yang, F; Lu, JR; Yang, X. Optical extinction combined with phase measurements for probing DNA-small molecule interactions using an evanescent waveguide biosensor. Anal. Chem?2010, 82, 5455–5462, doi:10.1021/ac9027164. 20524624
[97]
Dmitriev, DA; Massino, YS; Segal, OL. Kinetic analysis of interactions between biospecific monoclonal antibodies and immobilized antigens using a resonant mirror biosensor. J. Immunol. Method?2003, 280, 183–202, doi:10.1016/S0022-1759(03)00271-0.
[98]
Edwards, PR; Maule, CH; Leatherbarrow, RJ; Winzor, DJ. Second-order kinetic analysis of IAsys biosensor data: Its use and applicability. Anal. Biochem?1998, 263, 1–12, doi:10.1006/abio.1998.2814. 9750135
[99]
George, AJT; French, RR; Glennie, MJ. Measurement of kinetic binding constants of a panel of anti-saporin antibodies using a resonant mirror biosensor. J. Immunol. Method?1995, 183, 51–63, doi:10.1016/0022-1759(95)00031-5.