全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2010 

A Potentiometric Formaldehyde Biosensor Based on Immobilization of Alcohol Oxidase on Acryloxysuccinimide-modified Acrylic Microspheres

DOI: 10.3390/s101109963

Keywords: polymer spheres, n-butyl acrylate, N-acryloxysuccinimide, potentiometric biosensor, photopolymerization

Full-Text   Cite this paper   Add to My Lib

Abstract:

A new alcohol oxidase (AOX) enzyme-based formaldehyde biosensor based on acrylic microspheres has been developed. Hydrophobic poly(n-butyl acrylate-N-acryloxy-succinimide) [poly(nBA-NAS)] microspheres, an enzyme immobilization matrix, was synthesized using photopolymerization in an emulsion form. AOX-poly(nBA-NAS) microspheres were deposited on a pH transducer made from a layer of photocured and self-plasticized polyacrylate membrane with an entrapped pH ionophore coated on a Ag/AgCl screen printed electrode (SPE). Oxidation of formaldehyde by the immobilized AOX resulted in the production of protons, which can be determined via the pH transducer. Effects of buffer concentrations, pH and different amount of immobilization matrix towards the biosensor’s analytical performance were investigated. The formaldehyde biosensor exhibited a dynamic linear response range to formaldehyde from 0.3–316.2 mM and a sensitivity of 59.41 ± 0.66 mV/decade (R2 = 0.9776, n = 3). The lower detection limit of the biosensor was 0.3 mM, while reproducibility and repeatability were 3.16% RSD (relative standard deviation) and 1.11% RSD, respectively (n = 3). The use of acrylic microspheres in the potentiometric formaldehyde biosensor improved the biosensor’s performance in terms of response time, linear response range and long term stability when compared with thick film immobilization methods.

References

[1]  Herschkovitz, Y; Eshkenazi, I; Campbell, CE; Rishpon, J. An electrochemical biosensor for formaldehyde. J. Electroanal. Chem?2000, 491, 182–187, doi:10.1016/S0022-0728(00)00170-4.
[2]  Cui, XJ; Fang, GZ; Jiang, LQ; Wang, S. Kinetic spectrophotometric method for rapid determination of trace formaldehyde in foods. Anal. Chem. Acta?2007, 590, 253–259, doi:10.1016/j.aca.2007.03.042.
[3]  Korpan, YI; Gonchar, MV; Sibirny, AA; Martelet, C; El’skaya, AV; Gibson, TD; Soldatkin, AP. Development of highly selective and stable potentiometric sensors for formaldehyde determination. Biosens. Bioelectron?2000, 15, 77–83, doi:10.1016/S0956-5663(00)00054-3. 10826646
[4]  Ali, MB; Gonchar, M; Gayda, G; Paryzhak, S; Maaref, MA; Renault, NJ; Korpan, Y. Formaldehyde-sensitive sensor based on recombinant formaldehyde dehydrogenase using capacitance versus voltage measurements. Biosens. Bioelectron?2006, 22, 2790–2795. 17098416
[5]  Li, JR; Zhu, JL; Ye, LF. Determination of formaldehyde in squid by high-performance liquid chromatography. Asia Pac. J. Clin. Nutr?2007, 16, 127–130. 17392090
[6]  Rehbein, H. Determination of the formaldehyde content in fishery products. Z. Lebensmittel. Forsch. A?1987, 185, 292–298, doi:10.1007/BF01123034.
[7]  Yildiz, HB; Toppare, L. Biosensing approach for alcohol determination using immobilized alcohol oxidase. Biosens. Bioelectron?2005, 21, 2306–2310. 16352430
[8]  Abbasi, S; Esfandyarpour, M; Taher, MA; Daneshfar, A. Catalytic-kinetic determination of trace amount of formaldehyde by the spectrophotometric method with a bromate-Janus green system. Spectrochim. Acta A?2006, 67, 578–581.
[9]  Bunkoed, O; Davis, F; Kanatharana, P; Thavarungkul, P; Higson, SPJ. Sol-gel based sensor for selective formaldehyde determination. Anal. Chim. Acta?2009, 659, 251–257. 20103132
[10]  Li, ZW; Ma, HB; Lu, HB; Tao, GH. Determination of formaldehyde in foodstuffs by flow injection spectrophotometry using phloroglucinol as chromogenic agent. Talanta?2007, 74, 788–792. 18371710
[11]  Li, Q; Sritharathikhum, P; Oshima, M; Motomizu, S. Development of novel detection reagent for simple and sensitive determination of trace amounts of formaldehyde and its application to flow injection spectrophotometric analysis. Anal. Chim. Acta?2008, 612, 165–172, doi:10.1016/j.aca.2008.02.028. 18358862
[12]  Wang, S; Cui, XJ; Fang, GZ. Rapid determination of formaldehyde and sulfur dioxide in food products and Chinese herbals. Food Chem?2006, 103, 1487–1493.
[13]  Li, Q; Oshima, M; Motomizu, S. Flow-injection spectrofluorometric determination of trace amounts of formaldehyde in water after derivatization with acetoacetanilide. Talanta?2007, 72, 1675–1680, doi:10.1016/j.talanta.2007.01.054. 19071815
[14]  Motyka, K; Mikuska, P. Continuous fluorescence determination of formaldehyde in air. Anal. Chim. Acta?2004, 518, 51–57, doi:10.1016/j.aca.2004.05.033.
[15]  Oliveira, FS; Sousa, ET; Andrade, JB. A sensitive flow analysis system for the fluorimetric determination of low levels of formaldehyde in alcoholic beverages. Talanta?2007, 73, 561–566, doi:10.1016/j.talanta.2007.04.027. 19073071
[16]  Zhao, XQ; Zhang, ZQ. Microwave-assisted on-line derivatization for sensitive flow injection fluorometric determination of formaldehyde in some foods. Talanta?2009, 80, 242–245, doi:10.1016/j.talanta.2009.06.066. 19782221
[17]  Burini, G; Coli, R. Determination of formaldehyde in spirits by high-performance liquid chromatography with diode-array detection after derivatization. Anal. Chim. Acta?2004, 511, 155–158, doi:10.1016/j.aca.2004.01.025.
[18]  Chen, LG; Jin, HY; Wang, LG; Sun, L; Xu, HY; Ding, L; Yu, AM; Zhang, HQ. Dynamic ultrasound-assisted extraction coupled on-line with solid support derivation and high-performance liquid chromatography for the determination of formaldehyde in textiles. J. Chromatogr. A?2008, 1192, 89–94, doi:10.1016/j.chroma.2008.03.037. 18378258
[19]  Heyden, YV; Nguyet, ANM; Detaevernier, MR; Massart, DL; Plaizier-Vercammen, J. Simultaneous determination of ketoconazole and formaldehyde in a shampoo: Liquid chromatography method development and validation. J. Chromatogr. A?2002, 958, 191–201, doi:10.1016/S0021-9673(02)00384-9. 12134817
[20]  Liu, JF; Peng, JF; Chi, YG; Jiang, GB. Determination of formaldehyde in Shiitake mushroom by ionic liquid-based liquid-phase microextraction coupled with liquid chromatography. Talanta?2004, 65, 705–709.
[21]  Luo, WH; Li, H; Zhang, Y; Catharina, AYW. Determination of formaldehyde in blood plasma by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. B?2000, 753, 253–257.
[22]  Michels, JJ. Improved measurement of formaldehyde in water-soluble polymers by high-performance liquid chromatography coupled with post-column reaction detection. J. Chromatogr. A?2001, 914, 123–129, doi:10.1016/S0021-9673(00)01267-X. 11358205
[23]  Oliva-Teles, MT; Paiga, P; Delerue-Matos, CM; Alvim-Ferraz, MCM. Determination of free formaldehyde in foundry resins as its 2,4-dinitrophenylhydrazone by liquid chromatography. Anal. Chim. Acta?2002, 467, 97–103, doi:10.1016/S0003-2670(02)00130-7.
[24]  Bianchi, F; Careri, M; Musci, M; Mangia, A. Fish and food safety: Determination of formaldehyde in 12 fish species by SPME extraction and GC-MS analysis. Food Chem?2005, 100, 1049–1053.
[25]  Kim, SM; Kim, HJ. Comparison of standard methods and gas chromatography method in determination of formaldehyde emission from MDF bonded with formaldehyde-based resins. Bioresource Technol?2004, 96, 1457–1464.
[26]  Weng, X; Chon, CH; Jiang, H; Li, DQ. Rapid detection of formaldehyde concentration in food on a polydimethylsiloxane (PDMS) microfluidic chip. Food Chem?2008, 114, 1079–1082.
[27]  Xu, SY; Tu, GL; Han, XZ. Self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acylic acid) nanospheres for fabrication of a mediatorless biosensor. Anal. Chim. Acta?2006, 570, 151–157, doi:10.1016/j.aca.2006.04.020. 17723393
[28]  Liu, XQ; Guan, YP; Liu, HZ; Ma, ZY; Yang, Y; Wu, XB. Preparation and characterization of magnetic polymer nanospheres with high protein binding capacity. J. Magn. Magn. Mat?2005, 293, 111–118, doi:10.1016/j.jmmm.2005.01.051.
[29]  Wygladacz, K; Qin, Y; Wroblewski, W; Bakker, E. Phosphate-selective fluorescent sensing microspheres based on uranyl salophene ionophores. Anal. Chim. Acta?2008, 614, 77–84, doi:10.1016/j.aca.2008.02.069. 18405684
[30]  Xu, C; Wygladacz, K; Qin, Y; Retter, R; Bell, M; Bakker, E. Microsphere optical ion sensors based on doped silica gel templates. Anal. Chim. Acta?2005, 537, 135–143, doi:10.1016/j.aca.2005.01.008.
[31]  Peper, S; Tsagkatakis, I; Bakker, E. Cross-linked dodecyl acrylate microspheres: Novel matrices for plasticizer-free optical ion sensing. Anal. Chim. Acta?2001, 442, 25–33, doi:10.1016/S0003-2670(01)01132-1.
[32]  Peper, S; Ceresa, A; Qin, Y; Bakker, E. Plasticizer-free microspheres for ionophore-based sensing and extraction based on a methyl methacylate-decyl methacylate copolymer matrix. Anal. Chim. Acta?2003, 500, 127–136, doi:10.1016/S0003-2670(03)00275-7.
[33]  Ruan, CM; Ong, KG; Mungle, C; Paulose, M; Nickl, NJ; Grimes, CA. A wireless pH sensor based on the use of salt-independent micro-scale polymer spheres. Sens. Actuat. B Chem?2003, 96, 61–69, doi:10.1016/S0925-4005(03)00486-6.
[34]  Wygladacz, K; Bakker, E. Imaging fiber microarray fluorescent ion sensors based on bulk optode microspheres. Anal. Chim. Acta?2004, 532, 61–69.
[35]  Ngeontae, W; Xu, C; Ye, N; Wygladacz, K; Aeungmaitrepirom, W; Tuntulani, T; Bakker, E. Polymerized Nile Blue derivatives for plasticizer-free fluorescent ion optode microsphere sensors. Anal. Chim. Acta?2007, 599, 124–133, doi:10.1016/j.aca.2007.07.058. 17765072
[36]  Ye, N; Wygladacz, K; Bakker, E. Absorbance characterization of microsphere-based ion-selective optodes. Anal. Chim. Acta?2007, 596, 195–200, doi:10.1016/j.aca.2007.06.015. 17631097
[37]  Bayramo?lu, G; Yal?in, E; Ar?ca, MY. Immobilization of urease via adsorption onto l-histidine-Ni(II) complexed poly(HEMA-MAH) microspheres: Preparation and characterization. Process Biochem?2005, 40, 3505–3513, doi:10.1016/j.procbio.2005.03.058.
[38]  Brahim, S; Narinesingh, D; Guiseppi-Elie, A. Kinetics of glucose oxidase immobilized in p(HEMA)-hydrogel microspheres in a packed-bed bioreactor. J. Mol. Catal. B-Enzym?2002, 18, 69–80, doi:10.1016/S1381-1177(02)00061-9.
[39]  Xu, SY; Tu, GL; Han, XZ. Self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acylic acid) nanospheres for fabrication of a mediatorless biosensor. Anal. Chim. Acta?2006, 570, 151–157, doi:10.1016/j.aca.2006.04.020. 17723393
[40]  Xu, SY; Han, XZ. A novel method to construct a third-generation biosensor: Self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acrylic acid) nanospheres. Biosens. Bioelectron?2004, 19, 1117–1120, doi:10.1016/j.bios.2003.09.007. 15018967
[41]  Xu, SY; Peng, B; Han, XZ. A third-generation H2O2 biosensor based on horseradish peroxidase-labeled Au nanoparticle self-assembled to hollow porous polymetric nanospheres. Biosens. Bioelectron?2006, 22, 1807–1810. 16930982
[42]  Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem?1976, 72, 248–254, doi:10.1016/0003-2697(76)90527-3. 942051
[43]  Lee, YH; Alva, S; Ahmad, M. Ammonium ion sensor based on photocured and self-plasticising acrylic films for the analysis of sewage. Sens. Actuat. B Chem?2003, 98, 160–165.
[44]  Lee, YH; Hall, EAH. Assessing a photocured self-plasticised acrylic membrane recipe for Na+ and K+ ion selective electrodes. Anal. Chim. Acta?2001, 443, 25–40, doi:10.1016/S0003-2670(01)01195-3.
[45]  Siti, AH; Lee, YH; Musa, A. A formaldehyde biosensor based on potentiometric pH transducer and immobilized enzyme alcohol oxidase. Malaysian J. Chem?2006, 8, 012–016.
[46]  Chu, HH; Ou, ED. Emulsion polymerization of 2-hydroxyethyl methacrylate and partition of monomer between particles and water phase. Polym. Bull?2000, 44, 337–344, doi:10.1007/s002890050611.
[47]  Chaix, C; Pacard, E; Elaissari, A; Hilaire, JF; Picot, C. Surface functionalization of oil-in-water nanoemulsion with a reactive copolymer: Colloidal characterization and peptide immobilization. Colloid. Surface. B?2002, 29, 39–52.
[48]  Landfester, K; Schork, FJ; Kusuma, VA. Particle size distribution in mini-emulsion polymerization. C. R. Chim?2003, 6, 1337–1342, doi:10.1016/j.crci.2003.07.019.
[49]  Hervas-Perez, JP; Lopez-Cabarcos, E; Lopez-Ruiz, B. The application of methacrylate-based polymers to enzyme biosensors. Biomol. Eng?2006, 23, 233–245, doi:10.1016/j.bioeng.2006.06.003. 16880004
[50]  Russell, RJ; Axel, AC; Shields, KL; Pishko, MV. Mass transfer in rapidly photopolymerized poly(ethylene glycol) hydrogels used for chemical sensing. Polymer?2000, 42, 4893–4901.
[51]  B’Agosto, F; Charreyre, MT; Pichot, C. Side-product of N-acryloyloxysuccinimide or useful new bifunctional monomer. Macromol. Biosci?2001, 7, 322–328.
[52]  Ngounou, B; Neugebauer, S; Frodl, A; Reiter, S; Schuhmann, W. Combinational synthesis of a library of acrylic acid-based polymers and their evaluation as immobilization matrix for amperometric biosensors. Electrochim. Acta?2003, 49, 3855–3863.
[53]  Kondo, T; Morikawa, Y; Hayashi, N. Purification and characterization of alcohol oxidase from Paecilomyces variotii isolated as a formaldehyde-resistant fungus. Appl. Microbiol. Biotechnol?2007, 77, 995–1002. 17985128
[54]  Azevedo, AM; Prazeres, F; Cabral, JMS; Fonseca, LP. Ethanol biosensors based on alcohol oxidase. Biosens. Bioelectron?2004, 21, 235–247. 16023950
[55]  Dzyadevych, SV; Arkhypova, VN; Korpan, YI; El’skaya, AV; Soldatkin, AP; Jaffrezic-Renault, N; Martelet, C. Conductometric formaldehyde sensitive biosensor with specially adapted analytical characteristics. Anal. Chim. Acta?2001, 445, 47–55, doi:10.1016/S0003-2670(01)01249-1.
[56]  Vianello, F; Stefani, A; Paolo, MLD; Lui, B; Margesin, B; Zen, M; Scarpa, M; Soncini, G. Potentiometric detection of formaldehyde in air by an aldehyde dehydrogenase FET. Sens. Actuat. B Chem?1996, 37, 49–54, doi:10.1016/S0925-4005(97)80071-8.
[57]  Kataky, R; Bryce, MR; Goldenberg, L; Hayes, S; Nowak, A. A biosensor for monitoring formaldehyde using a new lipophilic tetrathiafulvalene-tetracyanoquinodimethane salt and a polyurethane membrane. Talanta?2001, 56, 451–458.
[58]  Curri, ML; Agostiano, A; Mallardi, A; Cosma, P; Monica, MD. Development of novel enzyme/semiconductor nanoparticles system for biosensor application. Mat. Sci. Eng. C?2002, 22, 449–452, doi:10.1016/S0928-4931(02)00191-1.
[59]  Vastarella, W; Nicastri, R. Enzyme/semiconductor nanoclusters combined systems for novel amperometric biosensors. Talanta?2004, 66, 627–633.
[60]  Nikitina, O; Shleev, A; Gayda, G; Demkiv, O; Gonchar, M; Gorton, L; Csoregi, E; Nistor, M. Bi-enzyme biosensor based on NAD+- and glutathione-dependent recombinant formaldehyde dehydrogenase and diaphorase for formaldehyde assay. Sens. Actuat. B Chem?2007, 125, 1–9, doi:10.1016/j.snb.2007.01.025.
[61]  Demkiv, O; Smutok, O; Paryzhak, S; Gayda, G; Sultanov, Y; Guschin, D; Shkil, H; Schuhmann, W; Gonchar, M. Reagentless amperometric formaldehyde-selective biosensors based on the recombinant yeast formaldehyde dehydrogenase. Talanta?2008, 76, 837–846, doi:10.1016/j.talanta.2008.04.040. 18656667
[62]  Shimomura, T; Itoh, T; Sumiya, T; Mizukami, F; Ono, M. Electrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materials. Sens. Actuat. B Chem?2008, 135, 268–275, doi:10.1016/j.snb.2008.08.025.
[63]  Bareket, L; Rephaeli, A; Berkovitch, G; Nudelman, A; Rishpon, J. Carbon nanotubes based electrochemical biosensor for detection of formaldehyde released from a cancer cell line treated with formaldehyde-releasing anticancer pro-drugs. Bioelectrochemistry?2009, 77, 94–99. 19643682

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133