全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2010 

Application of Sensing Techniques to Cellular Force Measurement

DOI: 10.3390/s101109948

Keywords: cell traction force, measurement, cell force monitor, micropost force sensor array, cell traction force microscopy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cell traction forces (CTFs) are the forces produced by cells and exerted on extracellular matrix or an underlying substrate. CTFs function to maintain cell shape, enable cell migration, and generate and detect mechanical signals. As such, they play a vital role in many fundamental biological processes, including angiogenesis, inflammation, and wound healing. Therefore, a close examination of CTFs can enable better understanding of the cellular and molecular mechanisms of such processes. To this end, various force-sensing techniques for CTF measurement have been developed over the years. This article will provide a concise review of these sensing techniques and comment on the needs for improved force-sensing technologies for cell mechanics and biology research.

References

[1]  Spudich, JA. The myosin swinging cross-bridge model. Nat. Rev. Mol. Cell Biol?2001, 2, 387–392. 11331913
[2]  Huxley, HE. The mechanism of muscular contraction. Science?1969, 164, 1356–1365, doi:10.1126/science.164.3886.1356. 4181952
[3]  Korn, ED; Hammer, JA. Myosins of nonmuscle cells. Annu. Rev. Biophys. Biophys. Chem?1988, 17, 23–45, doi:10.1146/annurev.bb.17.060188.000323. 3293586
[4]  Balaban, NQ; Schwarz, US; Riveline, D; Goichberg, P; Tzur, G; Sabanay, I; Mahalu, D; Safran, S; Bershadsky, A; Addadi, L; Geiger, B. Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nat. Cell Biol?2001, 3, 466–472, doi:10.1038/35074532. 11331874
[5]  Burridge, K; Chrzanowska-Wodnicka, M. Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol?1996, 12, 463–518, doi:10.1146/annurev.cellbio.12.1.463. 8970735
[6]  Harris, AK; Stopak, D; Wild, P. Fibroblast traction as a mechanism for collagen morphogenesis. Nature?1981, 290, 249–251, doi:10.1038/290249a0. 7207616
[7]  Wang, JH; Lin, JS. Cell traction force and measurement methods. Biomech. Model. Mechanobiol?2007, 6, 361–371, doi:10.1007/s10237-006-0068-4. 17203315
[8]  Pourati, J; Maniotis, A; Spiegel, D; Schaffer, JL; Butler, JP; Fredberg, JJ; Ingber, DE; Stamenovic, D; Wang, N. Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells? Am. J. Physiol?1998, 274, 1283–1289.
[9]  Beningo, KA; Dembo, M; Kaverina, I; Small, JV; Wang, YL. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol?2001, 153, 881–888, doi:10.1083/jcb.153.4.881. 11352946
[10]  Brown, RA; Prajapati, R; McGrouther, DA; Yannas, IV; Eastwood, M. Tensional homeostasis in dermal fibroblasts: Mechanical responses to mechanical loading in three-dimensional substrates. J. Cell Physiol?1998, 175, 323–332, doi:10.1002/(SICI)1097-4652(199806)175:3<323::AID-JCP10>3.0.CO;2-6. 9572477
[11]  Eckes, B; Krieg, T. Regulation of connective tissue homeostasis in the skin by mechanical forces. Clin. Exp. Rheumatol?2004, 22, S73–6. 15344602
[12]  Beningo, KA; Wang, YL. Flexible substrata for the detection of cellular traction forces. Trends Cell Biol?2002, 12, 79–84, doi:10.1016/S0962-8924(01)02205-X. 11849971
[13]  Burton, K; Park, JH; Taylor, DL. Keratocytes generate traction forces in two phases. Mol. Biol. Cell?1999, 10, 3745–3769. 10564269
[14]  Tranquillo, RT; Durrani, MA; Moon, AG. Tissue engineering science—Consequences of cell traction force. Cytotechnology?1992, 10, 225–250, doi:10.1007/BF00146673. 1369238
[15]  Bell, E; Ehrlich, HP; Buttle, DJ; Nakatsuji, T. Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science?1981, 211, 1052–1054, doi:10.1126/science.7008197. 7008197
[16]  Carlson, MA; Longaker, MT. The fibroblast-populated collagen matrix as a model of wound healing: A review of the evidence. Wound Repair Regen?2004, 12, 134–147, doi:10.1111/j.1067-1927.2004.012208.x. 15086764
[17]  Delvoye, P; Wiliquet, P; Leveque, JL; Nusgens, BV; Lapiere, CM. Measurement of mechanical forces generated by skin fibroblasts embedded in a three-dimensional collagen gel. J. Invest. Dermatol?1991, 97, 898–902, doi:10.1111/1523-1747.ep12491651. 1919053
[18]  Brown, RA; Talas, G; Porter, RA; McGrouther, DA; Eastwood, M. Balanced mechanical forces and microtubule contribution to fibroblast contraction. J. Cell Physiol?1996, 169, 439–447, doi:10.1002/(SICI)1097-4652(199612)169:3<439::AID-JCP4>3.0.CO;2-P. 8952693
[19]  Eastwood, M; McGrouther, DA; Brown, RA. A culture force monitor for measurement of contraction forces generated in human dermal fibroblast cultures: Evidence for cell-matrix mechanical signalling. Biochim. Biophys. Acta?1994, 1201, 186–192, doi:10.1016/0304-4165(94)90040-X. 7947931
[20]  Freyman, TM; Yannas, IV; Yokoo, R; Gibson, LJ. Fibroblast contractile force is independent of the stiffness which resists the contraction. Exp. Cell Res?2002, 272, 153–162, doi:10.1006/excr.2001.5408. 11777340
[21]  Dallon, JC; Ehrlich, HP. A review of fibroblast-populated collagen lattices. Wound Repair Regen?2008, 16, 472–479, doi:10.1111/j.1524-475X.2008.00392.x. 18638264
[22]  Grinnell, F. Fibroblasts, myofibroblasts, and wound contraction. J. Cell Biol?1994, 124, 401–404, doi:10.1083/jcb.124.4.401. 8106541
[23]  Ehrlich, HP; Rajaratnam, JB. Cell locomotion forces versus cell contraction forces for collagen lattice contraction: an in vitro model of wound contraction. Tissue. Cell?1990, 22, 407–417, doi:10.1016/0040-8166(90)90070-P. 2260082
[24]  Nishiyama, T; Tominaga, N; Nakajima, K; Hayashi, T. Quantitative evaluation of the factors affecting the process of fibroblast-mediated collagen gel contraction by separating the process into three phases. Coll. Relat. Res?1988, 8, 259–73, doi:10.1016/S0174-173X(88)80045-1. 3396309
[25]  Qi, J; Chi, L; Wang, J; Sumanasinghe, R; Wall, M; Tsuzaki, M; Banes, AJ. Modulation of collagen gel compaction by extracellular ATP is MAPK and NF-kappaB pathways dependent. Exp. Cell. Res?2009, 315, 1990–2000, doi:10.1016/j.yexcr.2009.02.012. 19245806
[26]  Harley, BA; Freyman, TM; Wong, MQ; Gibson, LJ. A new technique for calculating individual dermal fibroblast contractile forces generated within collagen-GAG scaffolds. Biophys. J?2007, 93, 2911–2922, doi:10.1529/biophysj.106.095471. 17586570
[27]  Kasugai, S; Suzuki, S; Shibata, S; Yasui, S; Amano, H; Ogura, H. Measurements of the isometric contractile forces generated by dog periodontal ligament fibroblasts in vitro. Arch. Oral. Biol?1990, 35, 597–601, doi:10.1016/0003-9969(90)90025-6. 2256814
[28]  Kolodney, MS; Wysolmerski, RB. Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study. J. Cell. Biol?1992, 117, 73–82, doi:10.1083/jcb.117.1.73. 1556157
[29]  Dahlmann-Noor, AH; Martin-Martin, B; Eastwood, M; Khaw, PT; Bailly, M. Dynamic protrusive cell behaviour generates force and drives early matrix contraction by fibroblasts. Exp. Cell Res?2007, 313, 4158–4169, doi:10.1016/j.yexcr.2007.07.040. 17869245
[30]  Eastwood, M; Porter, R; Khan, U; McGrouther, G; Brown, R. Quantitative analysis of collagen gel contractile forces generated by dermal fibroblasts and the relationship to cell morphology. J. Cell. Physiol?1996, 166, 33–42, doi:10.1002/(SICI)1097-4652(199601)166:1<33::AID-JCP4>3.0.CO;2-H. 8557773
[31]  Campbell, BH; Agarwal, C; Wang, JH. TGF-beta1, TGF-beta3, and PGE(2) regulate contraction of human patellar tendon fibroblasts. Biomech. Model. Mechanobiol?2004, 2, 239–45. 15103516
[32]  Campbell, BH; Clark, WW; Wang, JH. A multi-station culture force monitor system to study cellular contractility. J. Biomech?2003, 36, 137–140, doi:10.1016/S0021-9290(02)00325-1. 12485649
[33]  Peperzak, KA; Gilbert, TW; Wang, JH. A multi-station dynamic-culture force monitor system to study cell mechanobiology. Med. Eng. Phys?2004, 26, 355–358, doi:10.1016/j.medengphy.2003.10.004. 15121062
[34]  Bogatkevich, GS; Tourkina, E; Abrams, CS; Harley, RA; Silver, RM; Ludwicka-Bradley, A. Contractile activity and smooth muscle alpha-actin organization in thrombin-induced human lung myofibroblasts. Am. J. Physiol. Lung Cell Mol. Physiol?2003, 285, L334–343. 12665468
[35]  Ferrenq, I; Tranqui, L; Vailhe, B; Gumery, PY; Tracqui, P. Modelling biological gel contraction by cells: mechanocellular formulation and cell traction force quantification. Acta Biotheor?1997, 45, 267–93, doi:10.1023/A:1000684025534. 9436299
[36]  Harris, AK; Wild, P; Stopak, D. Silicone rubber substrata: A new wrinkle in the study of cell locomotion. Science?1980, 208, 177–179, doi:10.1126/science.6987736. 6987736
[37]  Oliver, T; Dembo, M; Jacobson, K. Traction forces in locomoting cells. Cell. Motil. Cytoskeleton?1995, 31, 225–240, doi:10.1002/cm.970310306. 7585992
[38]  Beningo, KA; Lo, CM; Wang, YL. Flexible polyacrylamide substrata for the analysis of mechanical interactions at cell-substratum adhesions. Methods. Cell. Biol?2002, 69, 325–339. 12071003
[39]  Dembo, M; Wang, YL. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J?1999, 76, 2307–2316, doi:10.1016/S0006-3495(99)77386-8. 10096925
[40]  Wang, N; Ostuni, E; Whitesides, GM; Ingber, DE. Micropatterning tractional forces in living cells. Cell. Motil. Cytoskeleton?2002, 52, 97–106, doi:10.1002/cm.10037. 12112152
[41]  Galbraith, CG; Sheetz, MP. A micromachined device provides a new bend on fibroblast traction forces. Proc. Natl. Acad. Sci. USA?1997, 94, 9114–9118, doi:10.1073/pnas.94.17.9114. 9256444
[42]  Li, B; Xie, L; Starr, ZC; Yang, Z; Lin, JS; Wang, JH. Development of micropost force sensor array with culture experiments for determination of cell traction forces. Cell. Motil. Cytoskeleton?2007, 64, 509–518, doi:10.1002/cm.20200. 17342763
[43]  Tan, JL; Tien, J; Pirone, DM; Gray, DS; Bhadriraju, K; Chen, CS. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl. Acad. Sci. USA?2003, 100, 1484–1489, doi:10.1073/pnas.0235407100. 12552122
[44]  du Roure, O; Saez, A; Buguin, A; Austin, RH; Chavrier, P; Silberzan, P; Ladoux, B. Force mapping in epithelial cell migration. Proc. Natl. Acad. Sci. USA?2005, 102, 2390–5, doi:10.1073/pnas.0408482102. 15695588
[45]  Lemmon, CA; Chen, CS; Romer, LH. Cell traction forces direct fibronectin matrix assembly. Biophys. J?2009, 96, 729–738, doi:10.1016/j.bpj.2008.10.009. 19167317
[46]  Zhao, Y; Zhang, X. Adaptation of flexible polymer fabrication to cellular mechanics study. Appl. Phys. Lett?2005, 87, 144101, doi:10.1063/1.2061861.
[47]  Burton, K; Taylor, DL. Traction forces of cytokinesis measured with optically modified elastic substrata. Nature?1997, 385, 450–454, doi:10.1038/385450a0. 9009194
[48]  Lee, J; Leonard, M; Oliver, T; Ishihara, A; Jacobson, K. Traction forces generated by locomoting keratocytes. J. Cell Biol?1994, 127, 1957–64, doi:10.1083/jcb.127.6.1957. 7806573
[49]  Iwadate, Y; Yumura, S. Actin-based propulsive forces and myosin-II-based contractile forces in migrating Dictyostelium cells. J. Cell Sci?2008, 121, 1314–1324, doi:10.1242/jcs.021576. 18388319
[50]  Schwarz, US; Balaban, NQ; Riveline, D; Bershadsky, A; Geiger, B; Safran, SA. Calculation of forces at focal adhesions from elastic substrate data: The effect of localized force and the need for regularization. Biophys. J?2002, 83, 1380–1394, doi:10.1016/S0006-3495(02)73909-X. 12202364
[51]  Das, T; Maiti, TK; Chakraborty, S. Traction force microscopy on-chip: shear deformation of fibroblast cells. Lab Chip?2008, 8, 1308–1318, doi:10.1039/b803925a. 18651073
[52]  Tan, W; Desai, TA. Microscale multilayer cocultures for biomimetic blood vessels. J. Biomed. Mater. Res. Part A?2005, 72A, 146–160, doi:10.1002/jbm.a.30182.
[53]  Zheng, XY; Zhang, X. An optical Moire technique for cell traction force mapping. J. Micromech. Microeng?2008, 18, 125006, doi:10.1088/0960-1317/18/12/125006.
[54]  Timoshenko, S; Woinowskey-Kreiger, S. Theory of Plates and Shells; McGraw-Hill: New York, NY, USA, 1959.
[55]  Tymchenko, N; Wallentin, J; Petronis, S; Bjursten, LM; Kasemo, B; Gold, J. A novel cell force sensor for quantification of traction during cell spreading and contact guidance. Biophys. J?2007, 93, 335–45, doi:10.1529/biophysj.106.093302. 17434936
[56]  Sniadecki, NJ; Lamb, CM; Liu, Y; Chen, CS; Reich, DH. Magnetic microposts for mechanical stimulation of biological cells: fabrication, characterization, and analysis. Rev. Sci. Instrum?2008, 79, 044302, doi:10.1063/1.2906228. 18447536
[57]  Butler, JP; Tolic-Norrelykke, IM; Fabry, B; Fredberg, JJ. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Cell Physiol?2002, 282, 595–605.
[58]  Dembo, M; Oliver, T; Ishihara, A; Jacobson, K. Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys. J?1996, 70, 2008–2022, doi:10.1016/S0006-3495(96)79767-9. 8785360
[59]  Sabass, B; Gardel, ML; Waterman, CM; Schwarz, US. High resolution traction force microscopy based on experimental and computational advances. Biophys. J?2008, 94, 207–20, doi:10.1529/biophysj.107.113670. 17827246
[60]  Yang, Z; Lin, JS; Chen, J; Wang, JH. Determining substrate displacement and cell traction fields—A new approach. J. Theor. Biol?2006, 242, 607–616, doi:10.1016/j.jtbi.2006.05.005. 16782134
[61]  Pelham, RJ, Jr; Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA?1997, 94, 13661–13665, doi:10.1073/pnas.94.25.13661. 9391082
[62]  Wang, YL; Pelham, RJ, Jr. Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol?1998, 298, 489–496. 9751904
[63]  Yeung, T; Georges, PC; Flanagan, LA; Marg, B; Ortiz, M; Funaki, M; Zahir, N; Ming, W; Weaver, V; Janmey, PA. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton?2005, 60, 24–34, doi:10.1002/cm.20041. 15573414
[64]  Kong, HJ; Polte, TR; Alsberg, E; Mooney, DJ. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc. Natl. Acad. Sci. USA?2005, 102, 4300–4305, doi:10.1073/pnas.0405873102. 15767572
[65]  Hur, SS; Zhao, Y; Li, YS; Botvinick, E; Chien, S. Live cells exert 3-dimensional traction forces on their substrata. Cell. Mole. Bioeng?2009, 2, 425–436, doi:10.1007/s12195-009-0082-6.
[66]  Mierke, CT; Rosel, D; Fabry, B; Brabek, J. Contractile forces in tumor cell migration. Eur. J. Cell Biol?2008, 87, 669–676, doi:10.1016/j.ejcb.2008.01.002. 18295931

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133