The immobilization of enzymes and other proteins into ordered thin materials has attracted considerable attention over the past few years. This research has demonstrated that biomolecules immobilized in different [Langmuir-Blodgett (LB)/Langmuir-Schaefer (LS)] matrixes retain their functional characteristics to a large extent. These new materials are of interest for applications as biosensors and biocatalysts. We review the growing field of oxidases immobilized onto ordered Langmiur-Blodgett and Langmuir-Schaefer films. Strategies for the preparation of solid supports and the essential properties of the resulting materials with respect to the envisaged applications are presented. Basic effects of the nature of the adsorption and various aspects of the application of these materials as biosensors, biocatalysts are discussed. Outlook of potential applications and further challenges are also provided.
References
[1]
Davis, F; Higson, SPJ. Structured thin films as functional components within biosensors. Biosens. Bioelectron?2005, 21, 1–20, doi:10.1016/j.bios.2004.10.001. 15967347
[2]
Girart-Egrot, AP; Godoy, S; Blum, LJ. Enzyme association with lipidic Langmuir-Blodgett films: Interests and applications in nanobioscience. Adv. Colloid Interf. Sci?2005, 116, 205–225, doi:10.1016/j.cis.2005.04.006.
[3]
Nicolini, C. Molecular Bioelectronics; World Scientific Publishing Co: Singapore, 1996.
[4]
Horbett, TA; Brash, JL. Proteins at Interfaces II: Fundamentals and Applications; American Chemical Society: Washington, DC, USA, 1995.
[5]
Bardea, A; Patolsky, F; Dagan, A; Wilner, I. Sensing and amplification of oligonucleotide-DNA interactions by means of impedance spectroscopy: A route to a Tay-Sachs detector. Chem. Commun?1999, 1, 21–22.
[6]
Cooper, JC; Hall, EAH. Electrochemical response of an enzyme-loaded polyaniline film. Biosens. Bioelectron?1992, 7, 473–485, doi:10.1016/0956-5663(92)80004-U.
[7]
Goto, TE; Lopez, RF; Oliveira, ON; Caseli, L. Enzyme activity of catalase immobilized in Langmuir?Blodgett films of phospholipids. Langmuir?2010, 26, 11135–11139, doi:10.1021/la101648x. 20491464
[8]
Pastorino, L; Nicolini, C. Langmuir-Blodgett films of lipase for biocatalysis. Mat. Sci. Engin. C?2002, 22, 419–422, doi:10.1016/S0928-4931(02)00197-2.
[9]
Schmidt, TF; Caseli, L; Viitala, T; Oliveira, ON, Jr. Enhanced activity of horseradish peroxidase in Langmuir-Blodgett films of phospholipids. BBA-Biomembranes?2008, 1778, 2291–2297, doi:10.1016/j.bbamem.2008.05.012. 18585999
[10]
Cabaj, J; Soloducho, J; Chyla, A; Bryjak, J; Zynek, K. The characterization of thin ordered films built of immobilized phenoloxidases. Sens. Actuat. B?2009, 136, 425–431, doi:10.1016/j.snb.2008.09.013.
[11]
Cabaj, J; So?oducho, J; Nowakowska-Oleksy, A. Langmuir-Blodgett film based biosensor for estimation of phenol derivatives. Sens. Actuat. B?2010, 143, 508–515, doi:10.1016/j.snb.2009.09.047.
[12]
Ramanathan, K; Ram, MK; Malholtra, BD; Surya, A; Murthy, N. Application of polyaniline Langmuir-Blodgett film as a glucose biosensor. Mater. Sci. Eng. C?1995, 3, 159–163, doi:10.1016/0928-4931(95)00113-1.
[13]
Singhal, R; Takashima, W; Kaneto, K; Samanta, SB; Annapoorni, S; Malhotra, BD. Langmuir-Blodgett film of poly-3-dodecylthiophene for application to glucose biosensor. Sens. Actuat. B?2002, 86, 42–48, doi:10.1016/S0925-4005(02)00145-4.
[14]
Singhal, R; Gambir, A; Pandey, MK; Annapoorni, S; Malhotra, BD. Immobilisation of urease on poly-(n-vinyl carbazole)/stearic acid Langmuir-Blodgett film for application to urea biosensor. Biosens. Bioelectron?2002, 17, 697–701, doi:10.1016/S0956-5663(02)00020-9. 12052355
[15]
Yahsi, A; Sahin, F; Demirel, G; Tumturk, H. Binary immobilization of tyrosinase by using alginate gel beads and poly(acrylamide-co-acrylic acid) hydrogels. Int. J. Biol. Macrom?2005, 36, 253–258, doi:10.1016/j.ijbiomac.2005.06.011.
[16]
Duran, N; Rosa, MA; D’Annibale, AL; Gianfreda, L. Bioremediation of food industry effluents: recent applications of free and immobilised polyphenoloxidases. Enzyme Microb. Technol?2002, 31, 907–931, doi:10.1016/S0141-0229(02)00214-4.
[17]
Kohn, M; Wacker, R; Peters, C; Schroder, H; Soulere, L; Breinbauer, R; Niemeyer; Waldmann, CMH. Staudinger ligation: a new immobilization strategy for the preparation of small-molecule arrays. Angew. Chem. Int?2003, 42, 5830–5834, doi:10.1002/anie.200352877.
[18]
Leblanc, RM; Huo, Q. Langmuir and Langmuir-Blodgett films of proteins and enzymes in Encyplopedia of Surface and Colloid Science. Somasundanan, P, Ed.; Taylor & Francis: New York, NY, USA, 2006.
[19]
Langmuir, I; Schaefer, VJ. Activities of urease and pepsin monolayers. J. Am. Chem. Soc?1938, 60, 1351–1360, doi:10.1021/ja01273a023.
[20]
Heckl, WM; Zaba, BN; Mohwald, H. Interactions of cytochrome bs and c with phospholipid monolayers. Bioch. Biophys. Acta?1987, 903, 166–176, doi:10.1016/0005-2736(87)90166-0.
Pavinatto, FJ; Caseli, L; Pavinatto, A; Dos Santos, DS; Nobre, TM; Zaniquelli, MED; Silva, HS; Miranda, PB; de Oliveira, ON. Probing chitosan and phospholipid interactions using Langmuir and Langmuir-Blodgett films as cell membrane models. Langmuir?2007, 23, 7666–7671, doi:10.1021/la700856a. 17539668
[23]
Caseli, L; Nobre, TM; Silva, DAK; Loh, W; Zaniquelli, MED. Flexibility of the triblock copolymers modulating their penetration and expulsion mechanism in Langmuir monolayers of dihexadecyl phosphoric acid. Colloid Surf. B-Biointerfaces?2001, 22, 309–321, doi:10.1016/S0927-7765(01)00197-7.
[24]
Caseli, L; Crespilho, FN; Nobre, TM; Zaniquelli, MED; Zucoletto, V; Oliveira, ON. Using phospholipid Langmuir and Langmuir Blodgett films as matrix for urease immobilization. J. Colloid Interface Sci?2008, 319, 100–108, doi:10.1016/j.jcis.2007.12.007. 18093610
[25]
Aoki, PHB; Alessio, P; Rodriguez-Mendez, ML; De Saja Saez, JA; Constantino, CJL. Taking advantage of electrostatic interactions to grow Langmuir-Blodgett films containing multilayers of the phospholipid dipalmitoylphosphatidylglycerol. Langmuir?2009, 25, 13062–13070, doi:10.1021/la901923v. 19601609
[26]
Langmuir, I. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc?1917, 39, 1848–1906, doi:10.1021/ja02254a006.
[27]
Smith, RD; Berg, JC. The collapse of surfactant monolayers at the air-water interface. J. Colloid Interface Sci?1980, 74, 273–286, doi:10.1016/0021-9797(80)90190-3.
[28]
Cabaj, J; Idzik, K; So?oducho, J; Chyla, A; Bryjak, J; Doskocz, J. Well ordered thin films as practical components of biosensors. Thin Solid Films?2008, 516, 1171–1174, doi:10.1016/j.tsf.2007.06.082.
[29]
Bourbonnais, R; Paice, MG; Freiermuth, B; Bodie, E; Borneman, S. Reactivities of various mediators and laccases with Kraft pulp and lignin model compounds. Appl. Environ. Microbiol?1997, 63, 4627–4632. 16535747
[30]
Bourbonnais, R; Leech, D; Paice, MG. Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochim. Biophys. Acta?1998, 1379, 381–390, doi:10.1016/S0304-4165(97)00117-7. 9545600
[31]
Xu, F. Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry?1996, 35, 7608–7614, doi:10.1021/bi952971a. 8652543
[32]
Pal, D; Chakrabarti, P. The interrelationships of side-chain and main-chain conformations in proteins. Prog. Biophys. Mol. Biol?2001, 76, 1–102, doi:10.1016/S0079-6107(01)00005-0. 11389934
[33]
Yamaguchi, S; Shirasaka, T; Akiyama, S; Tamao, K. Dibenzoborole-containing π-electron systems: remarkable fluorescence change based on the on/off control of the π-π* conjugation. J. Am. Chem. Soc?2002, 124, 8816–8817, doi:10.1021/ja026689k. 12137533
[34]
Baron, AM; Lubambo, AF; Lima, VMG; de Camargo, PC; Mitchell, DA; Krieger, N. Atomic force microscopy: A useful tool for evaluating aggregation of lipases. Microsc. Microanal?2005, 11, 74–77.
[35]
Singhal, R; Chaubey, A; Srikhirin, T; Aphiwantrakul, S; Pandey, SS; Malhotra, BD. Immobilization of glucose oxidase onto Langmuir-Blodgett films of poly-3-hexylthiophene. Current Appl. Phys?2003, 3, 275–279, doi:10.1016/S1567-1739(02)00215-8.
[36]
Saal, K; Sammelselg, V; L?hmus, A; Kuusk, E; Raidaru, G; Rinken, T; Rinken, A. Characterization of glucose oxidase immobilization onto mica carrier by atomic force microscopy and kinetic studies. Biomol. Eng?2002, 19, 195–199, doi:10.1016/S1389-0344(02)00044-8. 12202182
[37]
Rando, D; Kohring, GW; Giffhorn, F. Production, purification and characterization of glucose oxidase from a newly isolated strain of Penicillium pinophilum. Appl. Microbiol. Biotechnol?1997, 48, 34–40, doi:10.1007/s002530051011.
[38]
Fujiwara, I; Ohnishi, M; Set, J. Atomic force microscopy study of protein-incorporating Langmuir-Blodgett films. Langmuir?1992, 8, 2219–2222, doi:10.1021/la00045a025.
Reach, G; Wilson, GS. Can continuous glucose monitoring be used for the treatment of diabetes? Anal. Chem?1992, 64, 381–386A.
[41]
Gough, D; Lucisano, J; Tse, P. Two-dimensional enzyme electrode sensor for glucose. Anal. Chem?1985, 57, 2351–2357, doi:10.1021/ac00289a042. 4061843
[42]
Armour, J; Lucisano, J; Gough, D. In vitro stability of an oxygen sensor. Diabetes?1990, 39, 1519–1526, doi:10.2337/diabetes.39.12.1519. 2245876
[43]
Wang, J; Lu, F. Oxygen-rich oxidase enzyme electrodes for operation in oxygen free solutions. J. Am. Chem. Soc?1998, 120, 1048–1050, doi:10.1021/ja972759p.
[44]
Wang, J; Mo, JW; Li, SF; Porter, J. Comparison of oxygen-rich and mediator-based glucose-oxidase carbon-paste electrodes. Anal. Chim. Acta?2001, 441, 183–189, doi:10.1016/S0003-2670(01)01116-3.
[45]
D’Costa, E; Higgins, I; Turner, AP. Quinoprotein glucose dehydrogenase and its application in an amperometric glucose sensor. Biosensors?1986, 2, 71–87, doi:10.1016/0265-928X(86)80011-6. 3454651
[46]
Hill, HAO. Bio-Electrochemistry. Pure Appl Chem?1987, 59, 743–748, doi:10.1351/pac198759060743.
[47]
Degani, Y; Heller, A. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme. J. Phys. Chem?1987, 91, 1285–1289, doi:10.1021/j100290a001.
[48]
Bartlett, PN; Booth, S; Caruana, DJ; Kilburn, JD; Santamaria, C. Chemical modification of glucose oxidase with tetrathiafulvaline as electron mediators. Anal. Chem?1997, 69, 734–742, doi:10.1021/ac960533j.
Henry, C. Getting under the skin: implantable glucose sensors. Anal. Chem?1998, 70, 594–598A.
[51]
Wilson, GS; Gifford, R. Biosensors for real-time in vivo measurements. Biosens. Bioelectron?2005, 20, 2388–2403, doi:10.1016/j.bios.2004.12.003. 15854814
[52]
Vadgama, P; Desai, M; Crump, P. Electrochemical transducers for in vivo monitoring. Electroanalysis?1991, 3, 597–606, doi:10.1002/elan.1140030703.