全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2010 

A Ferrocene-Quinoxaline Derivative as a Highly Selective Probe for Colorimetric and Redox Sensing of Toxic Mercury(II) Cations

DOI: 10.3390/s101211311

Keywords: ferrocene, quinoxaline, mercury, electrochemistry, UV-vis spectroscopy

Full-Text   Cite this paper   Add to My Lib

Abstract:

A new chemosensor molecule 3 based on a ferrocene-quinoxaline dyad recognizes mercury (II) cations in acetonitrile solution. Upon recognition, an anodic shift of the ferrocene/ferrocenium oxidation peaks and a progressive red-shift (Δλ = 140 nm) of the low-energy band, are observed in its absorption spectrum. This change in the absorption spectrum is accompanied by a colour change from orange to deep green, which can be used for a “naked-eye” detection of this metal cation.

References

[1]  de Silva, AP; Gunaratne, HQN; Gunnlaugsson, T; Huxley, AJM; McCoy, CP; Rademacher, JT; Rice, TE. Signaling recognition events with fluorescent sensors and switches. Chem Rev?1997, 97, 1515–1566, doi:10.1021/cr960386p. 11851458
[2]  Valeur, B; Leray, I. Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev?2000, 205, 3–40, doi:10.1016/S0010-8545(00)00246-0.
[3]  Amendola, V; Fabbrizzi, L; Foti, F; Licchelli, M; Mangano, C; Pallavicini, P; Poggi, A; Sacchi, D; Taglietti, A. Light-emitting molecular devices based on transition metals. Coord Chem Rev?2006, 250, 273–299, doi:10.1016/j.ccr.2005.04.022.
[4]  Basu, N; Scheuhammer, A; Grochowina, N; Klenavic, K; Evans, D; O’Brien, M; Chan, H. Effects of mercury on neurochemical receptors in Wild River Otters (Lontra canadensis). Environ Sci Technol?2005, 39, 3585–3591, doi:10.1021/es0483746. 15952362
[5]  Zhang, Z; Wu, D; Guo, X; Qian, X; Lu, Z; Xu, Q; Yang, Y; Duan, L; He, Y; Feng, Z. Visible study of mercuric ion and its conjugate in living cells of mammals and plants. Chem Res Toxicol?2005, 18, 1814–1820, doi:10.1021/tx0501536. 16359171
[6]  US EPA. Regulatory Impact Analysis of the Clean Air Mercury Rule, EPA-452/R-05-003. Available online: http://www.epa.gov/ttnecas1/regdata/RIAs/mercury_ria_final.pdf/ (accessed on 20 November 2010).
[7]  Wang, Q; Kim, D; Dionysiou, DD; Sorial, GA; Timberlake, D. Sources and remediation for mercury contamination in aquatic systems—Aliterature review. Environ Pollut?2004, 131, 323–336, doi:10.1016/j.envpol.2004.01.010. 15234099
[8]  Tchounwou, PB; Ayensu, WK; Ninashvili, N; Sutton, D. Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol?2003, 18, 149–175, doi:10.1002/tox.10116. 12740802
[9]  Onyido, I; Norris, AR; Buncel, E. Biomolecule-mercury interactions: Modalities of DNA base-mercury binding mechanisms. Remediation strategies. Chem Rev?2004, 104, 5911–5929, doi:10.1021/cr030443w. 15584692
[10]  Feng, XB; Li, P; Qiu, GL; Wang, S; Li, GH; Shang, LH; Meng, B; Jiang, HM; Bai, WY; Li, ZG; Fu, XW. Human exposure to methylmercury through rice intake in mercury Mining areas, Guizhou province, China. Environ Sci Technol?2008, 42, 326–332, doi:10.1021/es071948x. 18350916
[11]  Krupp, EM; Mestrot, A; Wielgus, J; Meharg, AA; Feldmann, J. The molecular form of mercury in biota: identification of novel mercury peptide complexes in plants. Chem Commun?2009, 28, 4257–4259.
[12]  Shanker, G; Mutkus, LA; Walker, SJ; Aschner, M. Methylmercury enhances arachidonic acid release and cytosolic phospholipase A2 expression in primary cultures of neonatal astrocytes. Mol Brain Res?2002, 106, 1–11, doi:10.1016/S0169-328X(02)00403-5. 12393259
[13]  Clarkson, TW; Magos, L; Myers, GJ. The toxicology of mercury—Current exposures and clinical manifestations. N Engl J Med?2003, 349, 1731–1737, doi:10.1056/NEJMra022471. 14585942
[14]  Silbergeld, EK; Silva, IA; Nyland, JF. Mercury and autoimmunity: Implications for occupational and environmental health. Toxicol Appl Pharmacol?2005, 207, 282–292, doi:10.1016/j.taap.2004.11.035. 16023690
[15]  Clarkson, TW; Magos, L. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol?2006, 36, 609–662, doi:10.1080/10408440600845619. 16973445
[16]  Ye, B-C; Yin, B-C. Highly sensitive detection of mercury (II) Ions by fluorescence polarization enhanced by gold nanoparticles. Angew Chem Int Ed?2008, 47, 8386–8389, doi:10.1002/anie.200803069.
[17]  Crespo-López, ME; Macêdo, GL; Pereira, SID; Arrifano, GPF; Pican?o-Diniz, DLW; do Nascimento, JLM; Herculano, AM. Mercury and human genotoxicity: Critical considerations and possible molecular mechanisms. Pharmacol Res?2009, 60, 212–220, doi:10.1016/j.phrs.2009.02.011. 19446469
[18]  Caballero, A; Martínez, R; Lloveras, V; Ratera, I; Vidal-Gancedo, J; Wurst, K; Tárraga, A; Molina, P; Veciana, J. Highly selective chromogenic and redox or fluorescent sensors of Hg2+ in aqueous environment based on 1,4-disubstituted azines. J Am Chem Soc?2005, 127, 15666–15667, doi:10.1021/ja0545766. 16277484
[19]  Díez-Gil, C; Caballero, A; Ratera, I; Tárraga, A; Molina, P; Veciana, J. Naked-eye and selective detection of mercury (II) ions in mixed aqueous media using a cellulose-based support. Sensors?2007, 7, 3481–3488, doi:10.3390/s7123481.
[20]  Huang, J; Xu, Y; Qian, X. A rhodamine-based Hg2+ sensor with high selectivity and sensitivity in aqueous solution: A NS2-containing receptor. J Org Chem?2009, 74, 2167–2170, doi:10.1021/jo802297x. 19209877
[21]  Lu, H; Xiong, L; Liu, H; Yu, M; Shen, Z; Li, F; You, X. A highly selective and sensitive fluorescent turn-on sensor for Hg2+ and its application in live cell imaging. Org Biomol Chem?2009, 7, 2554–2558, doi:10.1039/b902912e. 19503929
[22]  Gong, J; Zhou, T; Song, D; Zhang, L; Hu, X. Stripping voltammetric detection of mercury(II) based on a bimetallic Au-Pt inorganic-Organic hybrid nanocomposite modified glassy carbon electrode. Anal Chem?2010, 82, 567–573, doi:10.1021/ac901846a. 20014816
[23]  Loe-Mie, F; Marchand, G; Berthier, J; Sarrut, N; Pucheault, M; Blanchard-Desce, M; Vinet, F; Vaultier, M. Towards an efficient microsystem for the real-time detection and quantification of mercury in water based on a specifically designed fluorogenic binary task-specific ionic liquid. Angew Chem Int Ed?2010, 49, 424–427, doi:10.1002/anie.200905037.
[24]  Han, WS; Lee, HY; Jung, SH; Lee, SJ; Jung, JH. Silica-based chromogenic and fluorogenic hybrid chemosensor materials. Chem Soc Rev?2009, 38, 1904–1915, doi:10.1039/b818893a. 19551171
[25]  Nolan, EM; Lippard, SJ. Tools and tactics for the optical detection of mercuric ion. Chem Rev?2008, 108, 3443–3480, doi:10.1021/cr068000q. 18652512
[26]  Selid, PD; Xu, H; Collins, EM; Face-Collins, MS; Zhao, JX. Sensing mercury for biomedical and environmental monitoring. Sensors?2009, 9, 5446–5459, doi:10.3390/s90705446. 22346707
[27]  Molina, P; Tárraga, A; Caballero, A. Ferrocene-based small molecules for multichannel molecular recognition of cations and anions. Eur J Inorg Chem?2008, 22, 3401–3417.
[28]  Otón, F; Espinosa, A; Tárraga, A; Ratera, I; Wurst, K; Veciana, J; Molina, P. Mononuclear ferrocenophane structural motifs with two thiourea arms acting as a dual binding site for anions and cations. Inorg Chem?2009, 48, 1566–1576, doi:10.1021/ic801879x. 19161309
[29]  Romero, T; Caballero, A; Espinosa, A; Tárraga, A; Molina, P. A multiresponsive two-arm ferrocene-based chemosensor molecule for selective detection of mercury. Dalton Trans?2009, 12, 2121–2129. 19274290
[30]  Alfonso, M; Sola, A; Caballero, A; Tárraga, A; Molina, P. Heteroditopic ligands based on ferrocenyl benzimidazoles fused to an additional diaza heterocyclic ring system. Dalton Trans?2009, 43, 9653–9658. 19859621
[31]  He, W; Myers, MR; Hanney, B; Spada, AP; Bilder, G; Galzcinski, H; Amin, D; Needle, S; Page, K; Jayyosi, Z; Perrone, MH. Potent quinoxaline-based inhibitors of PDGF receptor tyrosine kinase activity. Part 2: The synthesis and biological activities of RPR127963, an orally bioavailable inhibitor. Bioorg. Med. Chem. Lett?2003, 13, 3097–3100, doi:10.1016/S0960-894X(03)00655-3. 12941342
[32]  Kim, YB; Kim, YH; Park, JY; Kim, SK. Synthesis and biological activity of new quinoxaline antibiotics of echinomycin analogues. Bioorg Med Chem Lett?2004, 14, 541–544, doi:10.1016/j.bmcl.2003.09.086. 14698199
[33]  Yamamoto, T; Sugiyama, K; Kushida, T; Inoue, T; Kanbara, T. Preparation of new electron-accepting π-conjugated polyquinoxalines. Chemical and electrochemical reduction, electrically conducting properties and use in light-emiting diodes. J Am Chem Soc?1996, 118, 3930–3937, doi:10.1021/ja954173d.
[34]  Yamamoto, T. π-Conjugated polymers with electronic and optical functionalities: Preparation by organometallic polycondensation, properties and applications. Macromol Rapid Commun?2002, 23, 583–606, doi:10.1002/1521-3927(20020701)23:10/11<583::AID-MARC583>3.0.CO;2-I.
[35]  Sessler, JL; Cho, D-G; Lynch, V. Diindolylquinoxalines: Effective indole-based receptors for phosphate anion. J Am Chem Soc?2006, 128, 16518–16519, doi:10.1021/ja067720b. 17177398
[36]  Zapata, F; Caballero, A; Espinosa, A; Tárraga, A; Molina, P. A selective redox and chromogenic probe for Hg(II) in aqueous environment based on a ferrocene-azaquioxaline dyad. Inorg Chem?2009, 48, 11566–11575, doi:10.1021/ic901234d. 19925015
[37]  Alfonso, M; Tárraga, A; Molina, P. Ferrocene-based multichannel molecular chemosensors with high selectivity and sensitivity for Pb(II) and Hg(II) metal cations. Dalton Trans?2010, 39, 8637–8645, doi:10.1039/c0dt00450b. 20714630
[38]  Brown, DJ. The chemistry of heterocyclic compounds. In Quinoxalines: Supplement II; Taylor, EC, Wipf, P, Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2004.
[39]  Sanderson, CT; Quinlan, JA; Conover, RC; Johnson, MK; Murphy, M; Dluhy, RA; Kutal, C. Characterization of the low-energy electronic excited states of benzoyl-substituted ruthenocenes. Inorg Chem?2005, 44, 3283–3289, doi:10.1021/ic0482178. 15847438
[40]  Barlow, S; Bunting, HE; Ringham, C; Green, JC; Bublitz, GU; Boxer, SG; Perry, JW; Marder, SR. Studies of the electronic structure of metallocene-based second-order nonlinear optical dyes. J Am Chem Soc?1999, 121, 3715–3723, doi:10.1021/ja9830896.
[41]  Marder, SR; Perry, JW; Tiemann, BG; Schaefer, WP. Organometallic salts with large second-harmonic-generation powder efficiencies: (E)-1-ferrocenyl-2-(1-methyl-4-pyridiniumyl)ethylene salts. Organometallics?1991, 10, 1896–1901, doi:10.1021/om00052a039.
[42]  Coe, BJ; Jones, CJ; McCleverty, JA; Bloor, D; Cross, G. An assessment of second harmonic generation by donor acceptor molecules containing stilbenyl or diarylazo bridges between ferrocenyl donor and nitro acceptor groups. J Organomet Chem?1994, 464, 225–232, doi:10.1016/0022-328X(94)87278-3.
[43]  Müller, TJ; Netz, A; Ansorge, M. Syntheses and NLO properties of chromium carbonyl arene complexes with conjugated side chains: The amphoteric nature of chromium carbonyl complexation in push-pull chromophores. Organometallics?1999, 18, 5066–5074, doi:10.1021/om9904551.
[44]  Carr, JD; Coles, SJ; Hassan, WW; Hursthouse, MB; Malik, KMA; Tucker, JHR. The effect of protonation on the spectroscopic and redox properties of a series of ferrocenoyl derivatives. J Chem Soc Dalton Trans?1999, 57–62.
[45]  Specfit/32 Global Analysis System, 1999?2004, Spectrum Software Associates (SpecSoft@compuserve.com). The Specfit program was aquired from Bio-logic, SA (www.bio-logic.info) in January 2005. The equation to be adjusted by nonlinear regression using the above-mentioned software was ΔA/b = {K11Δ?HG[H]tot[G]}/{1 + K11[G]}, where H = host, G = guest, HG = complex, ΔA = variation in the absorption, b = cell width, K11 = association constant for a 1:1 model, and Δ?HG = variation of molar absorptivity.
[46]  Shortreed, M; Kopelman, R; Kuhn, M; Hoyland, B. Fluorescent fiber-optic calcium sensor for physiological measurements. Anal Chem?1996, 68, 1414–1418, doi:10.1021/ac950944k. 8651501

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133