全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Quantum slow-roll and quantum fast-roll inflationary initial conditions: CMB quadrupole suppression and further effects on the low CMB multipoles

DOI: 10.1103/PhysRevD.78.083508

Full-Text   Cite this paper   Add to My Lib

Abstract:

Quantum fast-roll initial conditions for the inflaton which are different from the classical fast-roll conditions and from the quantum slow-roll conditions can lead to inflation that last long enough. These quantum fast-roll initial conditions for the inflaton allow for kinetic energies of the same order of the potential energies and nonperturbative inflaton modes with nonzero wavenumbers. Their evolution starts with a transitory epoch where the redshift due to the expansion succeeds to assemble the quantum excited modes of the inflaton in a homogeneous (zero mode) condensate, and the large value of the Hubble parameter succeeds to overdamp the fast-roll of the redshifted inflaton modes. After this transitory stage the effective classical slow-roll epoch is reached. Most of the efolds are produced during the slow-roll epoch and we recover the classical slow-roll results for the scalar and tensor metric perturbations plus corrections. These corrections are important, both for scalar and for tensor perturbations, if scales which are horizon-size today exited the horizon by the end of the transitory stage and as a consequence the lower CMB multipoles get suppressed (fast-roll) or enhanced (precondensate). These two types of corrections can compete and combine in a scale dependent manner. They arise as natural consequences of the quantum nonperturbative inflaton dynamics, and provide a consistent and contrastable model for the origin of the suppression of the quadrupole and for other departures of the low CMB multipoles from the slow-roll inflation-LambdaCMB model which are to be contrasted to the TE and EE multipoles and to the forthcoming and future CMB data.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133