全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

Novel Fiber Optic Sensor Probe with a Pair of Highly Reflected Connectors and a Vessel of Water Absorption Material for Water Leak Detection

DOI: 10.3390/s120810906

Keywords: water leak detection, highly reflected connector, reference connector, sensing connector, sensor probe, water combination soil, vessel

Full-Text   Cite this paper   Add to My Lib

Abstract:

The use of a fiber optic quasi-distributed sensing technique for detecting the location and severity of water leakage is suggested. A novel fiber optic sensor probe is devised with a vessel of water absorption material called as water combination soil (WCS) located between two highly reflected connectors: one is a reference connector and the other is a sensing connector. In this study, the sensing output is calculated from the reflected light signals of the two connectors. The first reflected light signal is a reference and the second is a sensing signal which is attenuated by the optical fiber bending loss due to the WCS expansion absorbing water. Also, the bending loss of each sensor probe is determined by referring to the total number of sensor probes and the total power budget of an entire system. We have investigated several probe characteristics to show the design feasibility of the novel fiber sensor probe. The effects of vessel sizes of the probes on the water detection sensitivity are studied. The largest vessel probe provides the highest sensitivity of 0.267 dB/mL, while the smallest shows relatively low sensitivity of 0.067 dB/mL, and unstable response. The sensor probe with a high output value provides a high sensitivity with various detection levels while the number of total installable sensor probes decreases.

References

[1]  Juskaitis, R. Distributed interferometric fiber sensor system. Opt. Lett. 1992, 17, 1623–1625, doi:10.1364/OL.17.001623. 19798266
[2]  Wang, D.Y.; Wang, Y.; Han, M.; Gong, J.; Wang, A. Fully distributed fiber-optic biological sensing. IEEE Photonic Technol. Lett. 2010, 22, 1553–1555, doi:10.1109/LPT.2010.2069089.
[3]  Wang, D.Y.; Wang, Y.; Gong, J.; Wang, A. Fully distributed fiber-optic temperature sensing using acoustically-induced rocking grating. Opt. Lett. 2011, 17, 3392–3394.
[4]  Gillooly, A.M.; Zhang, L.; Bennion, I. Implementation of a distributed temperature sensor utilizing a chirped Moiré fiber Bragg grating. Opt. Commun. 2004, 242, 511–515, doi:10.1016/j.optcom.2004.09.011.
[5]  Michie, W.C.; Culshaw, B.; Konstantaki, M. Distributed pH and water detection using fiber-optic sensors and hydrogels. J. Lightwave Technol. 1995, 13, 1415–1420, doi:10.1109/50.400706.
[6]  Tomita, S.; Tachino, H.; Kasahara, N. Water sensor with optical fiber. J. Lightwave Technol. 1990, 8, 1829–1832, doi:10.1109/50.62878.
[7]  Jung, S.H.; Lee, D.H.; Kwon, K.H.; Song, J.W. Water sensor using macrobending-sensitive fiber for real-time submersion monitoring. Opt. Commun. 2006, 260, 105–108, doi:10.1016/j.optcom.2005.10.043.
[8]  Beltran-Perez, G.; Kuzin, E.A.; Camas-Anzueto, J.; Lopez, R.; Spirin, V.V.; Marquez-Lucero, A. Fiber bend losses produced by soft and swellable materials for hydrocarbon detection. Opt. Commun. 2002, 204, 145–150, doi:10.1016/S0030-4018(02)01210-5.
[9]  Liu, X.; Zhang, X.; Cong, J.; Xu, J.; Chen, K. Demonstration of etched cladding fiber Bragg grating-based sensors with hydrogel coating. Sens. Actuators B. 2003, 96, 468–472, doi:10.1016/S0925-4005(03)00605-1.
[10]  Yeo, T.L.; Sun, T.; Grattan, K.T.V. Fibre-optic sensor technologies for humidity and moisture measurement. Sens. Actuators A. 2008, 144, 280–295, doi:10.1016/j.sna.2008.01.017.
[11]  Kharaz, A.; Jones, B.; Grattan, K.T.V. A distributed fibre optic sensing system for humidity measurement. Meas. Contr. 1995, 28, 101–103.
[12]  Buerck, J.; Roth, S.; Kraemer, K.; Mathieu, H. OTDR fiber-optical chemical sensor system for detection and location of hydrocarbon leakage. J. Hazard. Mater. 2003, 102, 13–28, doi:10.1016/S0304-3894(03)00199-7. 12963280
[13]  Pinto, N.M.P.; Frazao, O.; Baptista, J.M.; Santos, J.L. Quasi-distributed displacement sensor for structural monitoring using a commercial OTDR. Opt. Lasers Eng. 2006, 44, 771–778, doi:10.1016/j.optlaseng.2005.07.009.
[14]  Bownass, D.C.; Barton, J.S.; Jones, J.D.C. Serially multiplexed point sensor for the detection of high humidity in passive optical networks. Opt. Lett. 1997, 22, 346–348, doi:10.1364/OL.22.000346. 18183197
[15]  Soto, M.A.; Bolognini, G.; Pasquale, F.D. Enhanced simultaneous distributed strain and temperature fiber sensor employing spontaneous brillouin scattering and optical pulse coding. IEEE Photonic Technol. Lett. 2009, 21, 450–452, doi:10.1109/LPT.2009.2012874.
[16]  Park, M.R.; Cho, J.S.; Cho, G.S. Comparison of physical and wear performance of panty hoses made with silk filament, texturized nylon filament and blends of two filaments. J. Kor. Fiber Soc. 1995, 32, 509–519.
[17]  Allan, W.S.; John, D.L. Optical Waveguide Theory; Chapman and Hall Press: London, UK, 1983.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133