This paper presents the application of a frequency-domain reflectometry (FDR) sensor designed for soil salinity assessment of sandy mineral soils in a wide range of soil moisture and bulk electrical conductivity, through the determination of soil complex dielectric permittivity spectra in the frequency range 10–500 MHz. The real part of dielectric permittivity was assessed from the 380–440 MHz, while the bulk electrical conductivity was calculated from the 165–325 MHz range. The FDR technique allows determination of bulk electrical conductivity from the imaginary part of the complex dielectric permittivity, without disregarding the dielectric losses. The soil salinity status was determined using the salinity index, defined as a partial derivative of the soil bulk electrical conductivity with respect to the real part of the soil complex dielectric permittivity. The salinity index method enables determining the soil water electrical conductivity value. For the five sandy mineral soils that have been tested, the relationship between bulk electrical conductivity and the real part of dielectric permittivity is essentially linear. As a result, the salinity index method applied for FDR measurements may be adapted to field use after examination of loam and clayey soils.
References
[1]
Rhoades, J.D.; Chanduvi, F.; Lesch, S. Soil Salinity Assessment: Methods and Interpretation of Electrical Conductivity Measurements. FAO Irrigation and Drainage Paper No. 57; Food and Agriculture Organization of the United Nations: Rome, Italy, 1999; p. 150.
[2]
Hendrikx, J.M.H.; Das, B.S.; Corwin, D.L.; Wraith, J.M.; Kachanoski, R.G. Relationship between soil water solute concentration and apparent soil electrical conductivity. Methods of Soil Analysis 2002, 1275–1282.
Naderi-Boldaji, M.; Sharifi, A.; Jamshidi, B.; Younesi-Alamouti, S.; Minaee, S. A dielectric-based combined horizontal sensor for on-the-go measurement of soil water content and mechanical resistance. Sens. Actuators A. 2011, 171, 131–137.
[5]
Noborio, K. Measurement of soil water content and electrical conductivity by time domain reflectometry: A review. Comput. Electron. Agric. 2001, 31, 213–237.
[6]
Skierucha, W.; Wilczek, A.; Alokhina, O. Calibration of a TDR probe for low soil water content measurements. Sens. Actuators A. 2008, 147, 544–552.
[7]
Malicki, M.A.; Walczak, R.T. Evaluating soil salinity status from bulk electrical conductivity and permittivity. Eur. J. Soil Sci. 1999, 50, 505–514.
[8]
Slawinski, C.; Witkowska-Walczak, B.; Lipiec, J.; Nosalewicz, A. Effect of aggregate size on water movement in soils. Int. Agrophys 2011, 25, 53–58.
[9]
Dalton, F.N.; Herkelrath, W.N.; Rawlins, D.S.; Rhoades, J.D. Time-domain reflectometry: Simultaneous measurement of soil water content and electrical conductivity with a single probe. Science 1984, 224, 989–990.
[10]
Topp, G.C.; Zegelin, S.; White, I. Impacts of the real and imaginary components of relative permittivity on time domain reflectometry measurements in soils. Soil Sci. Soc. Am. J. 2000, 64, 1244–1252.
[11]
Campbell, J.E. Dielectric properties and influence of conductivity in soils at one to fifty megahertz. Soil Sci. Soc. Am. J. 1990, 54, 332–341.
[12]
Heimovaara, T.J. Frequency domain analysis of time domain reflectometry waveforms 1. Measurement of the complex dielectric permittivity of soils. Water Resour. Res. 1994, 30, 189–199.
[13]
Malicki, M.A.; Plagge, R.; Roth, C.H. Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil. Eur. J. Soil Sci. 1996, 47, 357–366.
[14]
Sokolowska, Z.; Hajnos, M.; Elias, E.A.; Alaily, F. Characteristics of the specific surface area of Vertisols from the Gezira region in Sudan. Int. Agrophys 2004, 18, 83–90.
[15]
Glinski, J.; Ostrowski, J.; Stepniewska, Z.; Stepniewski, W. Soil sample bank representing mineral soils of Poland (in Polish). Probl. Agrofiz. 1991, 66, 1–61.
[16]
CRC Handbook of Chemistry and Physics; Weast, R.C., Ed.; CRC Press Inc.: Boca Raton, FL, USA, 1979.
[17]
Skierucha, W.; Wilczek, A. A FDR sensor for measuring complex soil dielectric permittivity in the 10–500 MHz frequency range. Sensors 2010, 10, 3314–3329.
[18]
Skierucha, W.; Walczak, R.T.; Wilczek, A. Comparison of Open-Ended Coax and TDR sensors for the measurement of soil dielectric permittivity in microwave frequencies. Int. Agrophys 2004, 18, 355–362.
[19]
Wilczek, A.; Skierucha, W.; Szyplowska, A. Influence of Moisture and Salinity of Soil on Its Dielectric Permittivity 2011, 1–86.
[20]
Whalley, W.R. Considerations on the use of time-domain reflectometry (TDR) for measuring soil water content. J. Soil Sci. 1993, 44, 1–9.