全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

Development and Application of Integrated Optical Sensors for Intense E-Field Measurement

DOI: 10.3390/s120811406

Keywords: electric field, E-field sensor, Pockels effect, integrated optics

Full-Text   Cite this paper   Add to My Lib

Abstract:

The measurement of intense E-fields is a fundamental need in various research areas. Integrated optical E-field sensors (IOESs) have important advantages and are potentially suitable for intense E-field detection. This paper comprehensively reviews the development and applications of several types of IOESs over the last 30 years, including the Mach-Zehnder interferometer (MZI), coupler interferometer (CI) and common path interferometer (CPI). The features of the different types of IOESs are compared, showing that the MZI has higher sensitivity, the CI has a controllable optical bias, and the CPI has better temperature stability. More specifically, the improvement work of applying IOESs to intense E-field measurement is illustrated. Finally, typical uses of IOESs in the measurement of intense E-fields are demonstrated, including application areas such as E-fields with different frequency ranges in high-voltage engineering, simulated nuclear electromagnetic pulse in high-power electromagnetic pulses, and ion-accelerating field in high-energy physics.

References

[1]  Bahrman, M.P.; Johnson, B.K. The ABCs of HVDC transmission technologies. IEEE Power Energy Mag. 2007, 5, 32–44.
[2]  Comber, M.; Nigbor, R.; Zaffanella, L. Transmission Line Reference Book-345 kV and Above; EPRI: Palo Alto, CA, USA, 1987. Chapter 6.
[3]  Hidaka, K. Progress in Japan of space charge field measurement in gaseous dielectric using a pockels sensor. IEEE Electr. Insul. Mag. 1996, 12, 17–28.
[4]  Meppelink, J.; Diederich, K.J.; Feser, K.; Pfaff, W.R. Very fast transients in GIS. IEEE Trans. Power Deliv. 1989, 4, 223–233.
[5]  Daniel, N.; Camp, M.; Sabath, F.; Haseborg, J.L.; Garbe, H. Susceptibility of some electronic equipment to HPEM threats. IEEE Trans. Electr. Comput. 2004, 46, 380–389.
[6]  Radasky, W.A.; Baum, C.E.; Wik, M.W. Introduction to the special issue on High-Power Electromagnetics (HPEM) and Intentional Electromagnetic Interference (IEMI). IEEE Trans. Electr. Comput. 2004, 46, 314–321.
[7]  Briggs, R.J. Pulse line ion accelerator concept. Phys. Rev. ST Accel. Beams 2006, 9, 060401:1–060401:16.
[8]  Caporaso, G.J.; Sampayan, S.; Chen, Y.-J.; Blackfield, D.; Harris, J.; Hawkins, S.; Holmes, C.; Krogh, M.; Nelson, S.; Nunnally, W.; et al. High Gradient Induction Accelerator. Proceedings of the IEEE Particle Accelerator Conference, Albuquerque, NM, USA, 25–29 June 2007; pp. 857–861.
[9]  Shen, X.-K.; Cao, S.-C.; Zhang, Z.-M.; Zhao, H.-W.; Zhao, Q.-T.; Liu, M.; Jing, Y.; Li, Z.-P.; Wan, M.; Wang, B.; et al. The test pulse line ion accelerator in Lanzhou. CPC(HEP & NP) 2012, 36, 241–246.
[10]  Masamitsu, T.; Nobuo, K. Recent progress in fiber optic antennas for EMC measurement. IEICE Trans. Commun. 1992, E75-B, 107–114.
[11]  IEEE International Committee on Electromagnetic Safety. IEEE Recommended Practice for Measurements and Computations of radio Frequency Electromagnetic Fields with Respect to Human Exposure to Such Fields, 100 kHz–300 GHz. IEEE Std C95.3; 2002.
[12]  Togo, H.; Kukutsu, N.; Shimizu, N.; Nagatsuma, T. Sensitivity stabilized fiber mounted electrooptic probe for electric field mapping. IEEE J. Light. Technol. 2008, 26, 2700–2705.
[13]  Feser, W.; Pfaff, W. A potential free spherical sensor for the measurement of transient electric field. IEEE Trans. Power Appar. Syst. 1984, PAS-103, 2904–2911.
[14]  Rosolem, J.B.; Barbosa, C.F.; Floridia, C.; Bezerra, E.W. A passive opto-electronic lightning sensor based on electromagnetic field detection for utilities applications. Meas. Sci. Technol. 2010, 21, 094032:1–094032:5.
[15]  Passaroa, V.M.N.; Dell'Olioa, F.; Leonardisb, D. Electromagnetic field photonic sensors. Prog. Quantum Electron. 2003, 30, 45–73.
[16]  Lee, D.-J.; Kang, N.-W.; Choi, J.-H.; Whitaker, J.F. Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing. Sensors 2011, 11, 806–824.
[17]  Wakita, K. Semiconductor Optical Modulators. Chapter 4; Springer: Berlin, Germany, 1998; pp. 79–92.
[18]  Heinzelmann, R.; Stohr, A.; Groz, M.; Kalinowski, D.; Alder, T.; Schmidt, M.; Idger, D. Optically Powered Remote Optical Field Sensor System Using an Electroabsorption-Modulator. Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Baltimore, MD, USA, 7–12 June 1998; pp. 1225–1228.
[19]  Hanson, L.K.; Fajer, J.; Thompson, M.A.; Zerner, M.C. Electrochromic effects of charge separation in bacterial photo synthesis: Theoretical models. J. Am. Chem. Soc. 1987, 109, 4728–4730.
[20]  Fernandez-Valdivielso, C.; Matias, I.R.; Gorraiz, M.; Arregui, F.J.; Bariain, C.; Lopez-Amo, M. Low Cost Electric Field Optical Fiber Detector. Proceedings of the Optical Fiber Sensors Conference Technical Digest, Portland, OR, USA, 6–10 May 2002; pp. 499–502.
[21]  Shimizu, R.; Matsuoka, M.; Kato, K.; Hayakawa, N.; Hikita, M.; Okubo, H. Development of Kerr electro-optic 3-d electric field measuring technique and its experimental verification. IEEE Trans. Dielectr. Electr. Insul. 1996, 3, 191–196.
[22]  Zahn, M. Optical, electrical and electromechanical measurement methodologies of field, charge and polarization in dielectrics. IEEE Trans. Dielectr. Electr. Insul. 1998, 5, 627–650.
[23]  Kuhara, Y.; Hamasaki, Y.; Kawakami, A.; Murakami, Y.; Tatsumi, M.; Takimoto, H.; Tada, K.; Mitsui, T. BSO/fibre-optic voltmeter with excellent temperature stability. Electron. Lett. 1982, 18, 1055–1056.
[24]  Mitsui, T.; Hosoe, K.; Usami, H.; Miyamoto, S. Development of fiber-optic voltage sensors and magnetic-field sensors. IEEE Trans. Power Deliv. 1987, 2, 87–93.
[25]  Hidaka, K. Electric Field and Voltage Measurement by Using Electro-Optic Sensor. Proceedings of the Eleventh International Symposium on High Voltage Engineering, London, England, 23–27 August 1999; pp. 1–14.
[26]  Hidaka, K.; Fujita, H. A new method of electric field measurements in corona discharge using Pockels device. J. Appl. Phys. 1982, 53, 5999–6003.
[27]  Hidaka, K.; Murooka, Y. Electric field measurements in long gap discharge using Pockels device. Proc. IEEE 1985, 132, 139–146.
[28]  Hidaka, K.; Teruya, K. Simultaneous measurement of two orthogonal components of electric field using a Pockels device. Rev. Sci. Instrum. 1989, 60, 1252–1257.
[29]  Bordovsky, M.; Cecelja, F.; Balachandran, W. Comparative study of cubic crystals performance in bulk electro-optic sensor for DC and extra-low-frequency measurements. Proc. SPIE 1999, 2389, 166–173.
[30]  Cecelja, F.; Bordovsky, M.; Balachandran, W. Lithium niobate sensor for measurement of DC electric fields. IEEE Trans. Instrum. Meas. 2001, 50, 465–469.
[31]  Cecelja, F.; Balachandran, W.; Bordovsky, M. Validation of electro-optic sensors for measurement of DC fields in the presence of space charge. Measurement 2007, 40, 450–458.
[32]  Duvillaret, L.; Rialland, S.; Coutaz, J.L. Electro-optic sensors for electric field measurements. I. Theoretical comparison among different modulation techniques. J. Opt. Soc. Am. B 2002, 19, 2692–703.
[33]  Duvillaret, L.; Rialland, S.; Coutaz, J.L. Electro-optic sensors for electric field measurements. II. Choice of the crystals and complete optimization of their orientation. J. Opt. Soc. Am. B 2002, 19, 2704–2715.
[34]  Bernier, M.; Gaborit, G.; Duvillaret, L.; Paupert, A.; Lasserr, J.L. Electric field and temperature measurement using ultra wide bandwidth pigtailed electro-optic probes. Appl. Opt. 2008, 47, 2470–2476.
[35]  Gaeremynck, Y.; Gaborit, G.; Duvillaret, L.; Ruaro, M.; Lecoche, F. Two electric-field components measurement using a 2-port pigtailed electro-optic sensor. Appl. Phys. Lett. 2011, 99, 141102:1–141102:3.
[36]  Garzarella, A.; Qadri, S.B.; Wieting, T.J.; Wu, D.H. Piezoinduced sensitivity enhancements in electro-optic field sensors. J. Appl. Phys. 2005, 98, 043113:1–043113:6.
[37]  Garzarella, A.; Qadri, S.B.; Wieting, T.J.; Wu, D.H. The effects of photorefraction on electro-optic field sensors. J. Appl. Phys. 2005, 97, 113108:1–113108:5.
[38]  Garzarella, A.; Qadri, S.B.; Wieting, T.J.; Wu, D.H.; Hinton, R.J. Dielectrically induced sensitivity enhancements in electro-optic field sensors. Opt. Lett. 2007, 32, 964–944.
[39]  Garzarella, A.; Qadri, S.B.; Wieting, T.J.; Wu, D.H.; Hinton, R.J. Responsivity optimization and stabilization in electro-optic field sensors. Appl. Opt. 2007, 46, 6636–6640.
[40]  Garzarella, A.; Qadri, S.B.; Wu, D.H. Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications. Appl. Phys. Lett. 2009, 94, 221113:1–221113:3.
[41]  Garzarella, A.; Wu, D.H. Non Intrusive Electromagnetic Sensors for Ultra Wideband Applications Using Electro-Optic and Magneto-Optic Materials. Proceedings of the IEEE International Conference on Ultra-Wideband, Bologna, Italia, 14–16 September 2011; pp. 240–242.
[42]  Wooten, E.L.; Kissa, K.M.; Kissa, K.M.; Yi-Yan, A.; Murphy, E.J.; Lafaw, D.A.; Hallemeier, P.F.; Maack, D.; Attanasio, D.V.; Fritz, D.J.; et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 69–82.
[43]  Kanda, M.; Masterson, K.D. Optically sensed EM-field probes for pulsed fields. Proc. IEEE 1992, 80, 209–215.
[44]  Bulmer, C.H.; Burns, W.K.; Moeller, R.P. Linear interferometric waveguide modulator for electromagnetic-field detection. Opt. Lett. 1980, 5, 176–178.
[45]  Zeng, R.; Wang, B.; Yu, Z.-Q.; Chen, W.-Y. Design and application of an integrated electro-optic sensor for intensive electric field measurement. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 312–319.
[46]  Bulmer, C.H.; Hiser, S.C.; Burns, W.K. Novel electrostatic mechanism in the thermal instability of Z-cut LiNbO3 interferometers. Appl. Phys. Lett. 1986, 49, 1221–1223.
[47]  Bulmer, C.H.; Burns, W.K.; Hiser, S.C. Pyroelectric effects in LiNbO3 channel-waveguide devices. Appl. Phys. Lett. 1986, 48, 1036–1038.
[48]  Bulmer, C.H.; Burns, W.K. Linear interferometric modulators in Ti: LiNbO3. J. Lightwave. Tech. 1984, LT-2, 512–521.
[49]  Howerton, M.M.; Bulmer, C.H.; Burns, W.K. Effect of intrinsic phase mismatch on linear modulator performance of the 1 × 2 directional coupler and Mach-Zehnder interferometer. J. Lightwave. Tech. 1990, 8, 1177–1186.
[50]  Bulmer, C.H.; Burn, W.K.; Greenblatt, A.S. Phase tuning by laser ablation of LiNbO3 interferometric modulators to optimum linearity. IEEE Photo. Technol. Lett. 1991, 3, 510–512.
[51]  Greenblatt, A.S.; Bulmer, C.H.; Moeller, R.P.; Burns, W.K. Thermal stability of bias point of packaged linear modulators in lithium niobate. J. Lightwave. Tech. 1995, 13, 2314–2319.
[52]  Kuwabara, N.; Tajima, K.; Kobayashi, R.; Amemiya, F. Development and analysis of electric field sensor using LiNbO3 optical modulator. IEEE Trans. Electron. Comput. 1992, 34, 391–396.
[53]  Tajima, K.; Kobayashi, R.; Kuwabara, N. Frequency bandwidth improvement of electric field sensor using optical modulator by resistively loaded element. Electr. Eng. Jpn. 1996, 123, 515–522.
[54]  Tajima, K.; Kuwabara, N.; Kobayashi, R.; Tokuda, M. Evaluation of an Electric field sensor with very small elements using a Mach-Zehnder interferometer. Electron. Commun. Jpn. 1997, 80, 69–78.
[55]  Tajima, K.; Kobayashi, R.; Kuwabara, N.; Tokuda, M. Improving design method for sensitivity and frequency response of E-field sensor using a Mach-Zehnder interferometer. IEICE Trans. Electron. 2000, E83-C, 347–354.
[56]  Kobayyashi, R.; Tajima, K.; Kuwabara, N.; Tokuda, M. Improvement of frequency characteristics of electric field sensor using Mach-Zehnder interferometer. Electron. Commun. Jpn. 2000, 83, 699–706.
[57]  Kobayyashi, R.; Tajima, K.; Kuwabara, N. Optical bias angle control method for electric field sensor using Mach-Zehnder Interferometer. Electron. Commun. Jpn. 2000, 83, 53–61.
[58]  Tajima, K.; Kobayyashi, R.; Kuwabara, N.; Tokuda, M. Development of optical isotropic E-field sensor operating more than 10 GHz using Mach-Zehnder interferometer. IEICE Trans. Electron. 2002, E85-C, 961–967.
[59]  Meier, T.; Kostrzcewa, K.; Schuppert, B.; Petermann, K. Electro-optical E-field sensor with optimised electrode structure. Electron. Lett. 1992, 28, 1327–1329.
[60]  Meier, T.; Kostrzewa, C.; Petermann, K.; Schuppert, B. Integrated optical E-field probes with segmented modulator electrodes. J. Lightwave. Tech. 1994, 12, 1497–1503.
[61]  Meier, T.; Kostrzewa, C.; Petermann, K.; Seebass, M.; Wust, P.; Fahling, H. Noninvasive E-field measurements using an integrated optical sensor. Proc. SPIE 1994, 2360, 49–52.
[62]  Schwerdt, M.; Berger, J.; Schuppert, B.; Petermann, K. Integrated optical E-field sensors with a balanced detection scheme. IEEE Trans. Electron. Comput. 1997, 39, 386–390.
[63]  Berger, J.; Pouhe, D.; Monich, G.; Fahling, H.; Wust, P.; Petermann, K. Calibration cell for E-field sensors in water environment. Electron. Lett. 1999, 35, 1317–1318.
[64]  Naghski, D.H.; Boyd, J.T.; Jackson, H.E.; Sriram, S.; Kingsley, S.A.; Latess, J. An integrated photonic mach-zehnder interferometer with no electrodes for sensing electric fields. J. Lightwave. Tech. 1994, 12, 1092–1098.
[65]  Jaeger, N.A.F.; Lisheng, H. Push–pull integrated-optics Mach–Zehnder interferometer with domain inversion in one branch. Opt. Lett. 1995, 20, 288–290.
[66]  Bull, J.D.; Jaeger, N.A.F.; Rahmatian, F. A new hybrid current sensor for high-voltage applications. IEEE Trans. Power Deliv. 2005, 20, 32–38.
[67]  Korotky, S.K.; Veselka, J.J. An RC network analysis of long term Ti: LiNbO3 bias stability. J. Lightwave. Tech. 1996, 14, 2687–2697.
[68]  Rong, Z.; Zhanqing, Y.; Bo, W.; Feng, W.; Jinliang, H.; Bo, Z.; Ben, N. Integrated optical sensor with grid electrode for intense electric field measurement. CN 200920143317.7; 2009.
[69]  Jaeger, N.A.F. Integrated-optic sensors for high-voltage substation applications. Proc. SPIE 1998, 3489, 41–52.
[70]  Thaniyavarn, S. Modified 1 × 2 directional coupler waveguide modulator. Electron. Lett. 1986, 22, 941–942.
[71]  Howerton, M.M.; Bulmer, C.H.; Burns, W.K. Linear 1 × 2 directional coupler for electromagnetic field detection. Appl. Phys. Lett. 1988, 55, 1850–1852.
[72]  Zeng, R.; Wang, B.; Yu, Z.-Q.; Niu, B.; Hua, Y. Integrated optical E-field sensor based on balanced Mach–Zehnder interferometer. Opt. Eng. 2011, 50, 11404.
[73]  Yariv, A.; Yeh, B. Optical Waves in Crystal; Wiley: New York, NY, USA, 1984; pp. 220–238.
[74]  Weis, R.S.; Gaylord, T.K. Lithium niobate: Summary of physical properties and crystal structure. Appl. Phys. A 1985, 37, 191–203.
[75]  Jaeger, N.A.F. Integrated Optics Pockels Cell Voltage Sensor. U.S. Patent 5029273, July 1991.
[76]  Jaeger, N.A.F.; Rahmatian, F. Bias of integrated optics Pockels cell high-voltage sensors. Proc. SPIE 1994, 2072, 87–95.
[77]  Jaeger, N.A.F.; Rahmation, F. Integrated optics pockels cell high-voltage sensor. IEEE Trans. Power Deliv. 1995, 10, 127–134.
[78]  Chavez, P.P.; Rahmatian, F.; Jaeger, N.A.F. Accurate voltage measurement with electric field sampling using permittivity-shielding. IEEE Trans. Power Deliv. 2002, 17, 362–368.
[79]  Ogawa, O.; Sowa, T.; Ichizono, S. A guide-wave optical electric field sensor with improved temperature stability. J. Lightwave. Tech. 1999, 17, 823–830.
[80]  Takahashi, T.; Hidaka, K.; Kouno, T. Single optical-waveguide electric-field sensor using pockels device. IEEE Trans. Jpn. 1994, 114-B, 26–31.
[81]  Takahashi, T.; Hidaka, K.; Kouno, T. New optical-waveguide pockels sensor for measuring electric fields. Jpn. J. Appl. Phys. 1996, 35, 767–771.
[82]  Takahashi, T. Electric field measurement just beneath a surface discharge by optical-waveguide pockels sensors. Electr. Eng. Jpn. 2003, 145, 28–34.
[83]  Li, H.; Zeng, R.; Wang, B. Electric Field Measurement from Tremendously Low Frequency to DC Based on Electro-optic Integrated Sensors. Proceedings of the PIERS2009, Moscow, Russia, 18–21 August 2009; pp. 1712–1716.
[84]  Zeng, R.; Zhang, Y.; Chen, W.-Y.; Zhang, B. Measurement of electric field distribution along composite insulators by integrated optical electric field sensor. IEEE Trans. Dieliv. Electr. Insul. 2008, 15, 302–310.
[85]  Zeng, R.; Zhuang, C.-J.; Yu, Z.-Q.; Li, Z.-Z.; Geng, Y.-N. Electric field step in air gap streamer discharges. Appl. Phys. Lett. 2011, 99, 221503.
[86]  Zeng, R.; Geng, Y.-N.; Zhang, B.; Yu, Z.-Q.; Li, H.; He, J.-L. Measurement of the Speed of Leader Progression in Long Air Gap Breakdown by Means of Electro-Optic Integrated Sensor. Proceedings of the Eleventh International Symposium on High Voltage Engineering, Johannesburg, South Africa, 24–28 August 2009.
[87]  Zeng, R.; Wang, B.; Yu, Z.-Q.; Li, H. Application of an Integrated Electro-Optic Sensor for Measuring very Fast Overvoltages in GIS. Proceedings of the Eleventh International Symposium on High Voltage Engineering, Johannesburg, South Africa, 24–28 August 2009.
[88]  Gavenda, J.D.; Foegelle, M.D. A Strip-Line TEM cell for Measuring Electromagnetic Emissions. Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, Cherry Hill, NJ, USA, 12–16 August 1991; pp. 17–18.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133