Foot plantar pressure is the pressure field that acts between the foot and the support surface during everyday locomotor activities. Information derived from such pressure measures is important in gait and posture research for diagnosing lower limb problems, footwear design, sport biomechanics, injury prevention and other applications. This paper reviews foot plantar sensors characteristics as reported in the literature in addition to foot plantar pressure measurement systems applied to a variety of research problems. Strengths and limitations of current systems are discussed and a wireless foot plantar pressure system is proposed suitable for measuring high pressure distributions under the foot with high accuracy and reliability. The novel system is based on highly linear pressure sensors with no hysteresis.
References
[1]
Hung, K.; Zhang, Y.T.; Tai, B. Wearable Medical Devices for Tele-Home Healthcare. Proceeding of 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEMBS '04), San Francisco, CA, USA, 1– 5 September 2004; pp. 5384–5387.
[2]
Bonato, P. Wearable sensors/systems and their impact on biomedical engineering. IEEE Eng. Med. Biol. Mag. 2003, 22, 18–20.
[3]
Rodgers, M. Dynamic biomechanics of the normal foot and ankle during walking and running. Phys. Ther. 1988, 68, 1822–1830.
[4]
Margolis, D.J.; Knauss, J.; Bilker, W.; Baumgarten, M. Medical conditions as risk factors for pressure ulcers in an outpatient setting. Age Ageing 2003, 32, 259–264.
[5]
Yong, F.; Yunjian, G.; Quanjun, S. A Human Identification Method Based on Dynamic Plantar Pressure Distribution. Proceeding of 2011 IEEE International Conference on Information and Automation (ICIA), Shenzhen, China, 6– 8 June 2011; pp. 329–332.
[6]
Yamakawa, T.; Taniguchi, K.; Asari, K.; Kobashi, S.; Hata, Y. Biometric Personal Identification Based on Gait Pattern using Both Feet Pressure Change. Proceeding of 2010 World Automation Congress (WAC), Kobe, Japan, 19–23 September 2010; pp. 1–6.
[7]
Sazonov, E.S.; Fulk, G.; Hill, J.; Schutz, Y.; Browning, R. Monitoring of posture allocations and activities by a shoe-based wearable sensor. IEEE Trans. Biomed. Eng. 2011, 58, 983–990.
[8]
Neaga, F.; Moga, D.; Petreus, D.; Munteanu, M.; Stroia, N. A Wireless System for Monitoring the Progressive Loading of Lower Limb in Post-Traumatic Rehabilitation. Proceeding of International Conference on Advancements of Medicine and Health Care through Technology, Cluj-Napoca, Romania, 29 August–2 September 2011; pp. 54–59.
[9]
Wada, C.; Sugimura, Y.; Ienaga, T.; Kimuro, Y.; Wada, F.; Hachisuka, K.; Tsuji, T. Development of a Rehabilitation Support System with a Shoe-Type Measurement Device for Walking. Proceedings of SICE Annual Conference 2010, Taipei, Taiwan, 18–21 August 2010; pp. 2534–2537.
[10]
Edgar, S.R.; Swyka, T.; Fulk, G.; Sazonov, E.S. Wearable Shoe-Based Device for Rehabilitation of Stroke Patients. Proceeding of 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Buenos Aires, Argentina, 31 August– 4 September 2010; pp. 3772–3775.
[11]
Gefen, A. Pressure-sensing devices for assessment of soft tissue loading under bony prominences: Technological concepts and clinical utilization. Wounds 2007, 19, 350–362.
[12]
O, K.K.; Kim, K.; Floyd, B.; Mehta, J.; Yoon, H.; Hung, C.M.; Bravo, D.; Dickson, T.; Guo, X.; Li, R.; et al. The Feasibility of On-Chip Interconnection Using Antennas. Proceeding of IEEE /ACM International Conference on Computer-Aided Design, 2005 (ICCAD-2005), San Jose, CA, USA, 6– 10 November 2005; pp. 979–984.
[13]
Karam, V.; Popplewell, P.H.R.; Shamim, A.; Rogers, J.; Plett, C. A 6.3 GHz BFSK Transmitter with On-Chip Antenna for Self-Powered Medical Sensor Applications. Proceeding of IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Honolulu, HI, USA, 3– 5 June 2007; pp. 101–104.
[14]
Lavery, L.; Vela, S.; Fleishli, J.; Armstrong, D.; Lavery, D. Reducing plantar pressure in the neuropathic foot. Diabetes Care 1997, 20, 1706–1710.
[15]
Mueller, M. Application of plantar pressure assessment in footwear and insert design. J. Orthop. Sports Phys. Ther. 1999, 29, 747–755.
[16]
Praet, S.; Louwerens, J. The influence of shoe design on plantar pressures in neuropathic feet. Diabetes Care 2003, 26, 441–445.
[17]
Queen, R.M.; Abbey, A.N.; Wiegerinck, J.I.; Yoder, J.C.; Nunley, J.A. Effect of shoe type on plantar pressure: A gender comparison. Gait Posture 2010, 31, 18–22.
[18]
CDC. Diabetes Public Health Resource. Diabetes DDT. Available online: http://www.cdc.gov/diabetes/ (accessed on 1 January 2012).
[19]
Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27, 1047–1053.
[20]
Gioftsidou, A.; Malliou, P.; Pafis, G.; Beneka, A.; Godolias, G.; Maganaris, C. The effects of soccer training and timing of balance training on balance ability. Eur. J. Appl. Phys. 2006, 96, 659–664.
[21]
Queen, R.; Haynes, B.; Hardaker, W.; Garrett, W. Forefoot loading during 3 athletic tasks. Am. J. Sports Med. 2007, 35, 630–636.
[22]
Best, R.; Begg, R. Overview of Movement Analysis and Gait Features. In Computational Intelligence for Movement Sciences: Neural Networks and Other Emerging Techniques, 1st ed. ed.; Idea Group: Atlanta, GA, USA, 2006; pp. 1–69.
[23]
MacWilliams, B.A.; Armstrong, P.F. Clinical Applications of Plantar Pressure Measurement in Pediatric Orthopedics. Proceeding of Pediatric Gait, 2000. A New Millennium in Clinical Care and Motion Analysis Technology, Chicago, IL, USA, 22 July 2000; pp. 143–150.
[24]
Novel Quality in Measurement. Available online: http://www.novel.de/ (accessed on 1 January 2012).
[25]
Zebris Medical GmbH. Available online: http://www.zebris.de (accessed on 1 January 2012.
[26]
Tekscan. Tactile Pressure Measurement, Pressure Mapping Systems, Force Sensors and Measurement Systems. Available online: http://www.tekscan.com/ (accessed on 1 January 2012).
[27]
Bamberg, S.; Benbasat, A.Y.; Scarborough, D.M.; Krebs, D.E.; Paradiso, J.A. Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 413–423.
[28]
Tanwar, H.; Nguyen, L.; Stergiou, N. Force Sensitive Resistor (FSR)-Based Wireless Gait Analysis Device. Proceeding of The Third IASTED International Conference on Telehealth, Montreal, QC, Canada, 31 May–1 June 2007.
[29]
Lee, N.; Goonetilleke, R.; Cheung, Y.; So, G. A flexible encapsulated MEMS pressure sensor system for biomechanical applications. J. Microsyst. Technol. 2001, 7, 55–62.
[30]
Shu, L.; Hua, T.; Wang, Y.; Li, Q.; Feng, D.; Tao, X. In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. IEEE Trans. Inf. Technol. Biomed. 2009, 14, 767–775.
Beeby, S. MEMS Mechanical Sensors; Artech House: Norwood, MA, USA, 2004.
[33]
Luo, Z.; Berglund, L.; An, K. Validation of F-Scan pressure sensor system: A technical note. Development 1998, 35, 186–191.
[34]
Madou, M. MEMS Fabrication. In The MEMS Handbook; CRC Press: Boca Raton, FL, USA, 2001.
[35]
Arndt, A. Correction for sensor creep in the evaluation of long-term plantar pressure data. J. Biomech. 2003, 36, 1813–1817.
[36]
Information and Resources for Students. School of Physics, University of Exeter. Available online: http://newton.ex.ac.uk/teaching/ (accessed on 1 January 2012).
[37]
Putnam, W.; Knapp, R. Input/Data Acquisition System Design for Human Computer Interfacing. Online Course Notes; Stanford University: Stanford, CA, USA, 1996.
[38]
Measurement Specialties. Pressure Sensors, Position Sensors, Temperature Sensors. Available online: http://www.meas-spec.com/ (accessed on 1 January 2012).
[39]
PCB Piezotronics Inc. Sensors that measure up! Available online: http://www.pcb.com/ (accessed on 1 January 2012).
[40]
Paromed. Available online: http://www.paromed.de/ (accessed on 1 January 2012).
[41]
CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH-MEMS, MOEMS and Solar. Available online: http://www.cismst.de/english/piezo.html (accessed on 1 January 2012).
[42]
Windle, C.M.; Gregory, S.M.; Dixon, S.J. The shock attenuation characteristics of four different insoles when worn in a military boot during running and marching. Gait Posture 1999, 9, 31–37.
[43]
Wahab, Y.; Zayegh, A.; Begg, R.K.; Veljanovski, R. Design of MEMS Biomedical Pressure Sensor for Gait Analysis. Proceeding of IEEE International Conference on Semiconductor Electronics, 2008 (ICSE), Johor Bahru, Malaysia, 25– 27 November 2008; pp. 166–169.
[44]
Vista Medical. Home of Pressure Mapping, Pressure Imaging and Pressure Sensing. Available online: http://www.pressuremapping.com/ (accessed on 1 January 2012).
[45]
The London Orthotic Consultancy. Available online: http://www.londonorthotics.co.uk/ (accessed on 1 January 2012).
[46]
Zhu, H.; Maalej, N.; Webster, J.G.; Tompkins, W.J.; Bach-Y-Rita, P.; Wertsch, J.J. An umbilical data-acquisition system for measuring pressures between the foot and shoe. IEEE Trans. Biomed. Eng. 1990, 37, 908–911.
[47]
Zhu, H.; Wertsch, J.; Harris, G.; Loftsgaarden, J.; Price, M. Foot pressure distribution during walking and shuffling. Arch. Phys. Med. Rehabil. 1991, 72, 390–397.
[48]
Hausdorff, J.M.; Ladin, Z.; Wei, J.Y. Footswitch system for measurement of the temporal parameters of gait. J. Biomech. 1995, 28, 347–351.
[49]
Lawrence, T.L.; Schmidt, R.N. Wireless In-Shoe Force System (for Motor Prosthesis). Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 30 October– 2 November 1997; pp. 2238–2241.
[50]
Yan, C.; Ming, Z. Measurement of In-Shoe Plantar Triaxial Stresses in High-Heeled Shoes. Proceeding of 2010 3rd International Conference on Biomedical Engineering and Informatics (BMEI), Yantai, China, 16–18 October 2010; pp. 1760–1763.
[51]
Healy, A.; Burgess-Walker, P.; Naemi, R.; Chockalingam, N. Repeatability of WalkinSense? in shoe pressure measurement system: A preliminary study. Foot 2012, 22, 35–39.
[52]
Benocci, M.; Rocchi, L.; Farella, E.; Chiari, L.; Benini, L. A Wireless System for Gait and Posture Analysis based on Pressure Insoles and Inertial Measurement Units. Proceeding of the 3rd International Conference on Pervasive Computing Technologies for Healthcare 2009 Pervasive Health 2009, London, UK, 1– 3 April 2009; pp. 1–6.
[53]
Yang, C.M.; Chou, C.M.; Hu, J.S.; Hung, S.H.; Yang, C.H.; Wu, C.C.; Hsu, M.Y.; Yang, T.L. A Wireless Gait Analysis System by Digital Textile Sensors. Proceeding of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009 (EMBC2009), Minneapolis, MN, USA, 3– 6 September 2009; pp. 7256–7260.
[54]
Crosbie, W.; Nicol, A. Reciprocal aided gait in paraplegia. Spinal Cord 1990, 28, 353–363.
[55]
Salpavaara, T.; Verho, J.; Lekkala, J.; Halttunen, J. Wireless Insole Sensor System for Plantar Force Measurements during Sport Events. Proceedings of IMEKO XIX World Congress on Fundamental and Applied Metrology, Lisbon, Portugal, 6–11 September 2009; pp. 2118–2123.
[56]
Holleczek, T.; Ruegg, A.; Harms, H.; Troster, G. Textile Pressure Sensors for Sports Applications. Proceeding of 2010 IEEE Sensors, Kona, HI, USA, 1– 4 November 2010; pp. 732–737.
[57]
Saito, M.; Nakajima, K.; Takano, C.; Ohta, Y.; Sugimoto, C.; Ezoe, R.; Sasaki, K.; Hosaka, H.; Ifukube, T.; Ino, S.; Yamashita, K. An in-shoe device to measure plantar pressure during daily human activity. Med. Eng. Phys. 2011, 33, 638–645.
[58]
De Rossi, S.M.M.; Lenzi, T.; Vitiello, N.; Donati, M.; Persichetti, A.; Giovacchini, F.; Vecchi, F.; Carrozza, M.C. Development of an In-Shoe Pressure-Sensitive Device for Gait Analysis. Proceeding of 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August– 3 September 2011; pp. 5637–5640.
[59]
Hills, A.; Hennig, E.; McDonald, M.; Bar-Or, O. Plantar pressure differences between obese and non-obese adults: A biomechanical analysis. Int. J. Obes. 2001, 25, 1674–1679.
[60]
Perttunen, J.; Kyrolainen, H.; Komi, P.V.; Heinonen, A. Biomechanical loading in the triple jump. J. Sports Sci. 2000, 18, 363–370.
[61]
Razak, A.H.A.; Zayegh, A.; Begg, R.K. Design and Simulation of a Wireless DAQ-IC for Foot Plantar Pressure. Proceeding of the Third International Conference on Intelligent Systems, Modelling and Simulation (ISMS), Kota Kinabalu, Malaysia, 8–10 February 2012; pp. 713–717.