全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

Using a Genetic Algorithm as an Optimal Band Selector in the Mid and Thermal Infrared (2.5–14 μm) to Discriminate Vegetation Species

DOI: 10.3390/s120708755

Keywords: genetic algorithms, thermal infrared remote sensing, spectral separability, spectral emissivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Genetic variation between various plant species determines differences in their physio-chemical makeup and ultimately in their hyperspectral emissivity signatures. The hyperspectral emissivity signatures, on the one hand, account for the subtle physio-chemical changes in the vegetation, but on the other hand, highlight the problem of high dimensionality. The aim of this paper is to investigate the performance of genetic algorithms coupled with the spectral angle mapper (SAM) to identify a meaningful subset of wavebands sensitive enough to discriminate thirteen broadleaved vegetation species from the laboratory measured hyperspectral emissivities. The performance was evaluated using an overall classification accuracy and Jeffries Matusita distance. For the multiple plant species, the targeted bands based on genetic algorithms resulted in a high overall classification accuracy (90%). Concentrating on the pairwise comparison results, the selected wavebands based on genetic algorithms resulted in higher Jeffries Matusita (J-M) distances than randomly selected wavebands did. This study concludes that targeted wavebands from leaf emissivity spectra are able to discriminate vegetation species.

References

[1]  Adam, E.; Mutanga, O. Spectral discrimination of papyrus vegetation (Cyperus papyrus L.) in swamp wetlands using field spectrometry. ISPRS J. Photogram. Remote Sens. 2009, 64, 612–620.
[2]  Cho, M.A.; Debba, P.; Mathieu, R.; Naidoo, L.; van Aardt, J.; Asner, G.P. Improving discrimination of savanna tree species through a multiple-endmember spectral angle mapper approach: Canopy-level analysis. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4133–4142.
[3]  Schmidt, K.S.; Skidmore, A.K. Spectral discrimination of vegetation types in a coastal wetland. Remote Sens. Environ. 2003, 85, 92–108.
[4]  Ustin, S.L.; Xiao, Q.F. Mapping successional boreal forests in interior central Alaska. Int. J. Remote Sens. 2001, 22, 1779–1797.
[5]  Landgrebe, D.A. Signal Theory Methods in Multispectral Remote Sensing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; p. 528.
[6]  Hao, X.; Qu, J.J. Fast and highly accurate calculation of band averaged radiance. Int. J. Remote Sens. 2009, 30, 1099–1108.
[7]  Hughes, G.F. On mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, 14, 55.
[8]  Vaiphasa, C.; Skidmore, A.K.; de Boer, W.F.; Vaiphasa, T. A hyperspectral band selector for plant species discrimination. ISPRS J. Photogram. Remote Sens. 2007, 62, 225–235.
[9]  Zhou, M.D.; Shu, J.O.; Chen, Z.G. Classification of hyperspectral remote sensing image based on genetic algorithm and SVM. In Remote Sensing and Modeling of Ecosystems for Sustainability VII; Gao, W., Jackson, T.J., Wang, J., Eds.; Spie-Int Soc Optical Engineering: Bellingham, WA, USA, 2010; Volume 7809.
[10]  Shahshahani, B.M.; Landgrebe, D.A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Trans. Geosci. Remote Sens. 1994, 32, 1087–1095.
[11]  Rui, H.; Mingyi, H. Band selection based on feature weighting for classification of hyperspectral data. IEEE Geosci. Remote Sens. Lett. 2005, 2, 156–159.
[12]  Du, Q. Independent component analysis to hyperspectral image classification. In Imaging Spectrometry X; Shen, S.S., Lewis, P.E., Eds.; Spie-Int Soc Optical Engineering: Bellingham, WA, USA, 2004; Volume 5546, pp. 366–373.
[13]  Ifarraguerri, A.; Chang, C.I. Unsupervised hyperspectral image analysis with projection pursuit. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2529–2538.
[14]  Kaewpijit, S.; Le moigne, J.; El-Ghazawi, T. Automatic reduction of hyperspectral imagery using wavelet spectral analysis. IEEE Trans. Geosci. Remote Sens. 2003, 41, 863–871.
[15]  Lee, C.H.; Landgrebe, D.A. Feature-extraction based on decision boundaries. IEEE Trans. Patt. Anal. Mach. Intell. 1993, 15, 388–400.
[16]  Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1989; p. 372.
[17]  Holland, J. Adaptation in Natural and Artificial Systems; University of Michigan: Ann Arbor, MI, USA, 1975.
[18]  Fang, H.; Liang, S.; Kuusk, A. Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model. Remote Sens. Environ. 2003, 85, 257–270.
[19]  Kawamura, K.; Watanabe, N.; Sakanoue, S.; Lee, H.-J.; Inoue, Y.; Odagawa, S. Testing genetic algorithm as a tool to select relevant wavebands from field hyperspectral data for estimating pasture mass and quality in a mixed sown pasture using partial least squares regression. Grassland Sci. 2010, 56, 205–216.
[20]  Keshava, N. Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1552–1565.
[21]  Leardi, R. Application of a genetic algorithm to feature selection under full validation conditions and to outlier detection. J. Chemometr. 1994, 8, 65–79.
[22]  Leardi, R.; Lupiá?ez González, A. Genetic algorithms applied to feature selection in PLS regression: How and when to use them. Chemometr. Intell. Lab. Syst. 1998, 41, 195–207.
[23]  Siedlecki, W.; Sklansky, J. A note on genetic algorithms for large-scale feature selection. Patt. Recogn. Lett. 1989, 10, 335–347.
[24]  Yu, S.; Backer, S.D.; Scheunders, P. Genetic feature selection combined with composite fuzzy nearest neighbor classifiers for hyperspectral satellite imagery. Patt. Recogn. Lett. 2002, 23, 183–190.
[25]  Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; Geological Survey, United States Government Printing Office: Washington, DC, USA, 1976.
[26]  Ribeiro da Luz, B.; Crowley, J.K. Spectral reflectance and emissivity features of broad leaf plants: Prospects for remote sensing in the thermal infrared (8.0–14.0 μm). Remote Sens. Environ. 2007, 109, 393–405.
[27]  Ribeiro da Luz, B. Attenuated total reflectance spectroscopy of plant leaves: A tool for ecological and botanical studies. New Phytol. 2006, 172, 305–318.
[28]  Ribeiro da Luz, B.; Crowley, J.K. Identification of plant species by using high spatial and spectral resolution thermal infrared (8.0–13.5 μm) imagery. Remote Sens. Environ. 2010, 114, 404–413.
[29]  Ullah, S.; Schlerf, M.; Skidmore, A.K.; Hecker, C. Identifying plant species using mid-wave infrared (2.5–6.0 μm) and thermal infrared (8–140 μm) emissivity spectra. Remote Sens. Environ. 2012, 118, 95–102.
[30]  Nicodemus, F.E. Directional reflectance and emissivity of an opaque surface. Appl. Opt. 1965, 4, 767–773.
[31]  Salisbury, J.W.; Wald, A.; D'Aria, D.M. Thermal-infrared remote sensing and Kirchhoff's law 1. Laboratory measurements. J. Geophys. Res. 1994, 99, 11897–11911.
[32]  Salisbury, J.W.; Milton, N.M. Thermal infrared (2.5–13.5 μm) directional hemispherical reflectance of leaves. Photogramm. Eng. Remote Sens. 1988, 54, 1301–1304.
[33]  Hecker, C.; Hook, S.; Meijde, M.; Bakker, W.; Werff, H.; Wilbrink, H.; Ruitenbeek, F.; Smeth, B.; Meer, F. Thermal infrared spectrometer for earth science remote sensing applications—Instrument modifications and measurement procedures. Sensors 2011, 11, 10981–10999.
[34]  Richards, J.A.; Jia, X. Remote Sensing Digital Image Analysis: An Introduction, 4th ed. ed.; Springer-Verlag: Berlin, Heidelberg, Germany, 2006.
[35]  Achenbach, H.; Lottes, M.; Waibel, R.; Karikas, G.A.; Correa, M.D.; Gupta, M.P. Constituents of tropical medicinal-plants; Alkaloids and other compounds from psychotria-correae. Phytochemistry 1995, 38, 1537–1545.
[36]  Elvidge, C.D. Thermal infrared reflectance of dry plant materials: 2.5–20.0 μm. Remote Sens. Environ. 1988, 26, 265–285.
[37]  Heredia, A. Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer. BBA Gener. Subj. 2003, 1620, 1–7.
[38]  Holloway, P.J. Structure and Histochemistry of Plant Cuticular Membrane: An Overview; Acadmic Press: London, UK, 1982.
[39]  Fabre, S.; Lesaignoux, A.; Olioso, A.; Briottet, X. Influence of water content on spectral reflectance of leaves in the 3–15 μm domain. IEEE Geosci. Remote Sens. Lett. 2011, 8, 143–147.
[40]  Gerber, F.; Marion, R.; Olioso, A.; Jacquemoud, S.; da Luz, B.R.; Fabre, S. Modeling directional-hemispherical reflectance and transmittance of fresh and dry leaves from 0.4 μm to 5.7 μm with the PROSPECT-VISIR model. Remote Sens. Environ. 2011, 115, 404–414.
[41]  Maréchal, Y.; Chanzy, H. The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J. Mol. Struct. 2000, 523, 183–196.
[42]  Kacuráková, M.; Wilson, R.H. Developments in mid-infrared FT-IR spectroscopy of selected carbohydrates. Carbohydr. Polym. 2001, 44, 291–303.
[43]  Silverstein, R.M.; Webster, F.X. Spectrometric Identification of Organic Compounds, 6th ed. ed.; John Wiley & Sons: New York, NY, USA, 1998; pp. 71–143.
[44]  Ramirez, F.J.; Luque, P.; Heredia, A.; Bukovac, M.J. Fourier-transform IR study of enzymatically isolated tomato fruit cuticular membrane. Biopolymers 1992, 32, 1425–1429.
[45]  Fry, S.C. Primary cell wall metabolism: Tracking the careers of wall polymers in living plant cells. New Phytol. 2004, 161, 641–675.
[46]  Wilson, R.H.; Smith, A.C.; Kacurakova, M.; Saunders, P.K.; Wellner, N.; Waldron, K.W. The mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier-transform infrared spectroscopy. Plant Physiol. 2000, 124, 397–405.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133