全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nucleon-Nucleon Scattering Parameters in the Limit of SU(3) Flavor Symmetry

Full-Text   Cite this paper   Add to My Lib

Abstract:

The scattering lengths and effective ranges that describe low-energy nucleon-nucleon scattering are calculated in the limit of SU(3)-flavor symmetry at the physical strange-quark mass with Lattice Quantum Chromodynamics. The calculations are performed with an isotropic clover discretization of the quark action in three volumes with spatial extents of L \sim 3.4 fm, 4.5fm and 6.7 fm, and with a lattice spacing of b \sim 0.145 fm. With determinations of the energies of the two-nucleon systems (both of which contain bound states at these up and down quark masses) at rest and moving in the lattice volume, Luscher's method is used to determine the low-energy phase shifts in each channel, from which the scattering length and effective range are obtained. The scattering parameters, in the 1S0 channel are found to be m_pi a^(1S0) = 9.50^{+0.78}_{-0.69}^{+1.10}_{-0.80} and m_pi r^(1S0) = {4.61^{+0.29}_{-0.31}^{+0.24}_{-0.26}, and in the 3S1 channel are m_pi a^(3S1) = 7.45^{+0.57}_{-0.53}^{+0.71}_{-0.49} and m_pi r^(3S1) = 3.71^{+0.28}_{-0.31}^{+0.28}_{-0.35}. These values are consistent with the two-nucleon system exhibiting Wigner's supermultiplet symmetry, which becomes exact in the limit of large-N_c. In both spin channels, the phase shifts change sign at higher momentum, near the start of the t-channel cut, indicating that the nuclear interactions have a repulsive core even at the SU(3)-symmetric point.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133