In-line fiber optic interferometers have attracted intensive attention for their potential sensing applications in refractive index, temperature, pressure and strain measurement, etc. Typical in-line fiber-optic interferometers are of two types: Fabry-Perot interferometers and core-cladding-mode interferometers. It’s known that the in-line fiber optic interferometers based on single-mode fibers can exhibit compact structures, easy fabrication and low cost. In this paper, we review two kinds of typical in-line fiber optic interferometers formed in single-mode fibers fabricated with different post-processing techniques. Also, some recently reported specific technologies for fabricating such fiber optic interferometers are presented.
References
[1]
Shao, L.Y.; Zhang, A.P.; Liu, W.S.; Fu, H.Y.; He, S. Optical refractive-index sensor based on dual fiber-Bragg gratings interposed with a multimode-fiber taper. IEEE Photon. Technol. Lett. 2007, 19, 30–32, doi:10.1109/LPT.2006.889010.
Brambilla, G.; Rutt, H. Fiber Bragg gratings with enhanced thermal stability. Appl. Phys. Lett. 2002, 80, 3259–3261, doi:10.1063/1.1475366.
[4]
Shu, X.; Gwandu, B.A.L.; Liu, Y.; Zhang, L.; Bennion, I. Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement. Opt. Lett. 2001, 26, 774–776, doi:10.1364/OL.26.000774. 18040446
[5]
Laffout, G.; Ferdinand, P. Tilted short-period fibre-Bragg-grating induced coupling to cladding modes for accurate refractometry. Meas. Sci. Technol. 2001, 12, 765–770, doi:10.1088/0957-0233/12/7/302.
[6]
Iadicicco, A.; Cusano, A.; Cutolo, A.; Bernini, R.; Giordano, M. Thinned fiber Bragg gratings as high sensitivity refractive index sensor. IEEE Photon. Technol. Lett. 2004, 16, 1149–1151, doi:10.1109/LPT.2004.824972.
[7]
Kim, Y.J.; Paek, U.C.; Lee, B.H. Measurement of refractive-index variation with temperature by use of long-period fiber gratings. Opt. Lett. 2002, 27, 1297–1299, doi:10.1364/OL.27.001297. 18026429
[8]
Patrick, H.J.; Kersey, A.D.; Bucholtz, F. Analysis of the response of long period fiber gratings to external index of refraction. J. Lightw. Technol. 1998, 16, 1606–1612, doi:10.1109/50.712243.
[9]
Besley, J.A.; Wang, T.; Reekie, L. Fiber cladding mode sensitivity characterization for long-period gratings. J. Lightw. Technol. 2003, 21, 848–853, doi:10.1109/JLT.2003.809577.
[10]
Zhu, T.; Rao, Y.J.; Mo, Q.J. Simultaneous measurement of refractive index and temperature using a single ultra long-period fiber grating. IEEE Photon. Technol. Lett. 2005, 17, 2700–2702, doi:10.1109/LPT.2005.859400.
Zhu, T.; Rao, Y.J.; Wang, J.L.; Song, Y. A highly sensitive fiber-optic refractive index sensor based on an edge-written long-period fiber grating. IEEE Photon. Technol. Lett. 2007, 19, 1946–1948, doi:10.1109/LPT.2007.908777.
[13]
Zhu, T.; Rao, Y.J.; Song, Y.; Chiang, K.S. Highly sensitive temperature-independent strain sensor based on a long-period fiber grating with a CO2-laser engraved rotary structure. IEEE Photon. Technol. Lett. 2009, 21, 543–545, doi:10.1109/LPT.2009.2014566.
[14]
Kim, D.H.; Park, J.W.; Kang, H.K.; Hong, C.S.; Kim, C.G. Measuring dynamic strain of structures using a gold-deposited extrinsic Fabry-Perot interferometer. Smart Mater. Struct. 2003, 12, 1–5, doi:10.1088/0964-1726/12/1/301.
[15]
Hunger, D.; Steinmetz, T.; Colombe, Y.; Deutsch, C.; Hansch, T.W.; Reichel1, J. A fiber Fabry-Perot cavity with high finesse. New J. Phys. 2010, 12, doi:10.1088/1367-2630/12/6/065038.
[16]
Duan, D.W.; Rao, Y.J.; Zhu, T. High sensitivity gas refractometer based on all-fiber open-cavity Fabry-Perot interferometer formed by large lateral offset splicing. JOSA B 2012, 29, 912–915, doi:10.1364/JOSAB.29.000912.
[17]
Wang, W.; Yu, Q.; Li, F.; Zhou, X.; Jiang, X. Temperature-insensitive pressure sensor based on all-fused-silica extrinsic Fabry-Perot optical fiber interferometer. IEEE Sen. J. 2012, 12, 2425–2429, doi:10.1109/JSEN.2012.2190056.
[18]
Arregui, F.J.; Matias, I.R.; Liu, Y.; Lenahan, K.M.; Claus, R.O. Optical fiber nanometer-scale Fabry-Perot interferometer formed by the ionic self-assembly monolayer process. Opt. Lett. 1999, 24, 596–598, doi:10.1364/OL.24.000596. 18073794
[19]
Cheng, L.; Steckl, A.J.; Scofield, J. SiC thin-film Fabry-Perot interferometer for fiber-optic temperature sensor. IEEE Trans. Electron. Devices 2003, 50, 2159–2164, doi:10.1109/TED.2003.816106.
[20]
Pérennès, F.; Beard, P.C.; Mills, T.N. Analysis of a low-finesse Fabry-Perot sensing interferometer illuminated by a multimode optical fiber. Appl. Opt. 1999, 38, 7026–7034, doi:10.1364/AO.38.007026. 18324247
[21]
Chen, J.H.; Zhao, J.R.; Huang, X.G.; Huang, Z.J. Extrinsic fiber-optic Fabry-Perot interferometer sensor for refractive index measurement of optical glass. Appl. Opt. 2010, 49, 5592–5596, doi:10.1364/AO.49.005592. 20935706
[22]
Zhao, J.R.; Huang, X.G.; He, W.X.; Chen, J.H. High-resolution and temperature-insensitive fiber optic refractive index sensor based on fresnel reflection modulated by Fabry-Perot interference. J. Lightw. Technol. 2010, 28, 2799–2803, doi:10.1109/JLT.2010.2065215.
Huang, Z.; Zhu, Y.; Chen, X.; Wang, A. Novel intrinsic Fabry-Perot fiber sensor using single mode-multimode-single mode structure. IEEE Photon. Technol. Lett. 2005, 17, 2403–2405, doi:10.1109/LPT.2005.857236.
[27]
Tsai, W.H.; Lin, C.J. A novel structure for the intrinsic Fabry-Perot fiber-optic temperature sensor. IEEE J. Lightw. Technol. 2011, 19, 682–686.
[28]
Rao, Y.J.; Deng, M.; Duan, D.W.; Zhu, T. In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber. Sens. Actuat. A 2008, 148, 33–38, doi:10.1016/j.sna.2008.06.030.
Machavaram, V.R.; Badcock, R.A.; Fernando, G.F. Fabrication of intrinsic fibre Fabry-Perot sensors in silica fibres using hydrofluoric acid etching. Sens. Actuat. A 2007, 138, 248–260, doi:10.1016/j.sna.2007.04.007.
[35]
Tafulo, P.A.R.; Jorge, P.A.S.; Santos, J.L.; Araujo, F.M.; Frazao, O. Intrinsic Fabry-Perot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement. IEEE Sens. J. 2012, 12, 8–12, doi:10.1109/JSEN.2011.2107737.
[36]
Lee, C.L.; Liu, W.F.; Weng, Z.Y.; Hu, F.C. Hybrid AG-FFPI/RLPFG for simultaneously sensing refractive index and temperature. IEEE Photon. Technol. Lett. 2011, 23, 1231–1233, doi:10.1109/LPT.2011.2158816.
[37]
Kim, D.W.; Shen, F.; Chen, X.; Wang, A. Simultaneous measurement of refractive index and temperature based on a reflection-mode long-period grating and an intrinsic Fabry-Perot interferometer sensor. Opt. Lett. 2005, 30, 3000–3002, doi:10.1364/OL.30.003000. 16315701
Singh, H.; Sirkis, J.S. Simultaneously measuring temperature and strain using optical fiber microcavities. J. Lightw. Technol. 1997, 15, 647–653, doi:10.1109/50.566686.
[41]
Rao, Y.J.; Zhu, T.; Yang, X.C.; Duan, D.W. In-line fiber-optic etalon formed by hollow-core photonic crystal fiber. Opt. Lett. 2007, 32, 2662–2664, doi:10.1364/OL.32.002662. 17873927
[42]
Duan, D.W.; Rao, Y.J.; Xu, L.C.; Zhu, T.; Deng, M.; Wu, D.; Yao, J. In-fiber Fabry-Perot and Mach-Zehnder interferometers based on hollow optical fiber fabricated by arc fusion splicing with small lateral offsets. Opt. Commun. 2011, 284, 5311–5314, doi:10.1016/j.optcom.2011.07.052.
[43]
Lee, C.L.; Lee, L.H.; Hwang, H.E.; Hsu, J.M. Highly sensitive air-gap fiber Fabry-Perot interferometers based on polymer-filled hollow core fibers. IEEE Photon. Technol. Lett. 2012, 24, 149–151, doi:10.1109/LPT.2011.2174632.
[44]
Choi, H.Y.; Mudhana, G.; Park, K.S.; Paek, U.C.; Lee, B.H. Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index. Opt. Express 2010, 18, 141–149, doi:10.1364/OE.18.000141. 20173833
[45]
Deng, M.; Tang, C.P.; Zhu, T.; Rao, Y.J.; Xu, L.C.; Han, M. Refractive index measurement using photonic crystal fiber-based Fabry-Perot interferometer. Appl. Opt. 2010, 49, 1593–1598, doi:10.1364/AO.49.001593. 20300155
[46]
Choi, H.Y.; Park, K.S.; Park, S.J.; Paek, U.C.; Lee, B.H.; Choi, E.S. Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer. Opt. Lett. 2008, 33, 2455–2457, doi:10.1364/OL.33.002455. 18978885
[47]
Zhu, T.; Ke, T.; Rao, Y.J.; Chiang, K.S. Fabry-Perot optical fiber tip sensor for high temperature measurement. Opt. Commun. 2010, 283, 3683–3685, doi:10.1016/j.optcom.2010.05.037.
[48]
Frazao, O.; Aref, S.H.; Baptista, J.M.; Santos, J.L.; Latifi, H.; Farahi, F.; Kobelke, J.; Schuster, K. Fabry-Perot cavity based on a suspended-core fiber for strain and temperature measurement. IEEE Photon. Technol. Lett. 2009, 21, 1229–1231, doi:10.1109/LPT.2009.2024645.
[49]
Villatoro, J.; Finazzi, V.; Coviello, G.; Pruneri, V. Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer. Opt. Lett. 2009, 34, 2441–2443, doi:10.1364/OL.34.002441. 19684809
[50]
Deng, M.; Tang, C.P.; Zhu, T.; Rao, Y.J. PCF-based Fabry-Perot interferometric sensor for strain measurement at high temperatures. IEEE Photon. Technol. Lett. 2011, 23, 700–702, doi:10.1109/LPT.2011.2124452.
[51]
Li, E.; Peng, G.D.; Ding, X. High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity. Appl. Phy. Lett. 2008, 92, 101117–101119, doi:10.1063/1.2895637.
[52]
Kashyap, R.; Nayar, B. An all single-mode fiber Michelson interferometer sensor. J. Lightw. Technol. 1983, 1, 619–624, doi:10.1109/JLT.1983.1072153.
[53]
Porte, H.; Gorel, V.; Kiryenko, S.; Goedgebuer, J.-P.; Daniau, W.; Blind, P. Imbalanced Mach-Zehnder interferometer integrated in micromachined silicon substrate for pressure sensor. J. Lightw. Technol. 1999, 7, 229–233.
[54]
Ohkawa, M.; Izutsu, M.; Sueta, T. Integrated optic pressure sensor on silicon substrate. Appl. Opt. 1989, 28, 5153–5157, doi:10.1364/AO.28.005153. 20556016
Moon, D.S.; Kim, B.H.; Lin, A.; Sun, G.; Han, T.G.; Han, W.T.; Chung, Y. The temperature sensitivity of Sagnac loop interferometer based on polarization maintaining side-hole fiber. Opt. Express 2007, 15, 7962–7967, doi:10.1364/OE.15.007962. 19547123
[57]
Fan, Y.E.; Zhu, T.; Shi, L.L.; Rao, Y.J. Highly sensitive refractive index sensor based on two cascaded special long-period fiber gratings with rotary refractive index modulation. Appl. Opt. 2011, 50, 4604–4610, doi:10.1364/AO.50.004604. 21833138
[58]
Allsop, T.; Reeves, R.; Webb, D.J.; Bennion, I.; Neal, R. A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer. Rev. Sci. Instrum. 2002, 73, 1702–1705, doi:10.1063/1.1459093.
[59]
Ding, J.F.; Zhang, A.P.L.; Shao, Y.; Yan, J.H.; He, S. Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor. IEEE Photon. Technol. Lett. 2005, 17, 1247–1249, doi:10.1109/LPT.2005.847437.
[60]
Kim, D.W.; Zhang, Y.; Cooper, K.L.; Wang, A. In-fiber reflection mode interferometer based on a long-period grating for external refractive-index measurement. Appl. Opt. 2005, 44, 5368–5373, doi:10.1364/AO.44.005368. 16161647
Choi, H.Y.; Park, K.S.; Lee, B.H. Photonic crystal fiber interferometer composed of a long period fiber grating and one point collapsing of air holes. Opt. Lett. 2008, 33, 812–814, doi:10.1364/OL.33.000812. 18414541
[63]
Wu, D.; Zhu, T.; Deng, M.; Duan, D.W.; Shi, L.L.; Yao, J.; Rao, Y.-J. Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers. Appl. Opt. 2011, 50, 1548–1553, doi:10.1364/AO.50.001548. 21478927
Tian, Z.B.; Yam, S.S.H.; Barnes, J.; Bock, W.; Greig, P.; Fraser, J.M.; Loock, H.P.; Oleschuk, R.D. Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single mode fiber tapers. IEEE Photonics Technol. Lett. 2008, 20, 626–628, doi:10.1109/LPT.2008.919507.
[67]
Tian, Z.B.; Yam, S.S.H.; Loock, H.P. Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber. Opt. Lett. 2008, 33, 1105–1107, doi:10.1364/OL.33.001105. 18483527
[68]
Lu, P.; Men, L.; Sooley, K.; Chen, Q. Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature. Appl. Phys. Lett. 2009, 94, 131110:1–131110:4.
[69]
Wu, D.; Zhu, T.; Chiang, K.-S.; Deng, M. All single-mode fiber Mach-Zehnder interferometer based on two peanut-shape structures. IEEE J. Lightw. Technol. 2012, 30, 805–810, doi:10.1109/JLT.2011.2182498.
[70]
Tian, Z.B.; Yam, S.S.H.; Loock, H.P. Single mode fiber refractive index sensor based on core-offset attenuators. IEEE Photon. Technol. Lett. 2008, 20, 1387–1389, doi:10.1109/LPT.2008.926832.
[71]
Choi, H.Y.; Kim, M.J.; Lee, B.H. All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber. Opt. Express 2007, 15, 5711–5720, doi:10.1364/OE.15.005711. 19532829
[72]
Duan, D.W.; Rao, Y.J.; Xu, L.C.; Zhu, T.; Wu, D.; Yao, J. In-fiber Mach-Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity. Sens. Actuat. B 2011, 160, 1198–1202, doi:10.1016/j.snb.2011.09.048.
[73]
Dong, X.Y.; Su, L.; Shum, P.; Chung, Y.; Chan, C.C. Wavelength-selective all-fiber filter based on a single long-period fiber grating and a misaligned splicing point. Opt. Commun. 2006, 258, 159–163, doi:10.1016/j.optcom.2005.07.075.
[74]
Nguyen, L.V.; Hwang, D.; Moon, S.; Moon, D.S.; Chung, Y. High temperature fiber sensor with high sensitivity based on core diameter mismatch. Opt. Express 2008, 16, 11369–11375, doi:10.1364/OE.16.011369. 18648456
[75]
Li, E.; Wang, X.; Zhang, C. Fiber-optic temperature sensor based on interference of selective higher-order modes. Appl. Phys. Lett. 2006, 89, 091119:1–091119:3.
[76]
Liu, Y.; Wei, L. Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers. Appl. Opt. 2007, 46, 2516–2519, doi:10.1364/AO.46.002516. 17429465
[77]
Pang, F.; Liu, H.; Guo, H.; Liu, Y.; Zeng, X.; Chen, N.; Chen, Z.; Wang, T. In-fiber Mach-Zehnder interferometer based on double cladding fibers for refractive index sensor. IEEE Sens. J. 2011, 11, 2395–2400, doi:10.1109/JSEN.2011.2123885.
[78]
Zhu, J.J.; Zhang, A.P.; Xia, T.H.; He, S.L.; Xue, W. Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer. IEEE Sens. J. 2010, 10, 1415–1418, doi:10.1109/JSEN.2010.2042592.
[79]
Frazao, O.; Silva, S.F.O.; Viegas, J.; Baptista, J.M.; Santos, J.L.; Kobelke, J.; Schuster, K. All fiber Mach-Zehnder interferometer based on suspended twin-core fiber. IEEE Photon. Technol. Lett. 2010, 22, 1300–1302, doi:10.1109/LPT.2010.2054071.
[80]
Yuan, L.; Yang, J.; Liu, Z. A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer. IEEE Sens. J. 2008, 8, 1114–1117, doi:10.1109/JSEN.2008.926873.
[81]
We, T.; Lan, X.W.; Xiao, H. Fiber inline core–cladding-mode Mach-Zehnder interferometer fabricated by two-point CO2 laser irradiations. IEEE Photon. Technol. Lett. 2009, 21, 669–671, doi:10.1109/LPT.2009.2016116.
Wang, Y.; Yang, M.W.; Wang, D.N.; Liu, S.J.; Lu, P.X. Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity. J. Opt. Soc. Am. B 2010, 27, 370–374, doi:10.1364/JOSAB.27.000370.
[84]
Jiang, L.; Yang, J.; Wang, S.; Li, B.; Wang, M. Fiber Mach-Zehnder interferometer based on micro cavities for high-temperature sensing with high sensitivity. Opt. Lett. 2011, 36, 3753–3755, doi:10.1364/OL.36.003753. 21964086
[85]
Choi, H.Y.; Park, K.S.; Lee, B.H. Photonic crystal fiber interferometer composed of a long period fiber grating and one point collapsing of air holes. Opt. Lett. 2008, 33, 812–814, doi:10.1364/OL.33.000812. 18414541
Villatoro, J.; Minkovich, V.P.; Pruneri, V.; Badenes, G. Simple all-microstructured-optical-fiber interferometer built via fusion splicing. Opt. Express 2007, 15, 1491–1496, doi:10.1364/OE.15.001491. 19532381
[88]
Villatoro, J.; Finazzi, V.; Badenes, G.; Pruneri, V. Highly sensitive sensors based on photonic crystal fiber modal interferometers. J. Sens. 2009, 2009, 747803:1–747803:11.
[89]
Jha, R.; Villatoro, J.; Badenes, G.; Pruneri, V. Refractometry based on a photonic crystal fiber interferometer. Opt. Lett. 2009, 34, 617–619, doi:10.1364/OL.34.000617. 19252570
[90]
Jha, R.; Villatoro, J.; Badenes, G. Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing. Appl. Phys. Lett. 2008, 93, 191106:1–191106:3.
[91]
Villatoro, J.; Kreuzer, M.P.; Jha, R.; Minkovich, V.P.; Finazzi, V.; Badenes, G.; Pruneri, V. Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity. Opt. Express 2009, 17, 1447–1453, doi:10.1364/OE.17.001447. 19188973
[92]
Wang, J.N.; Tang, J.L. Photonic crystal fiber Mach-Zehnder interferometer for refractive index sensing. Sensors 2012, 12, 2983–2995, doi:10.3390/s120302983. 22736988
[93]
Lee, B.H.; Kim, Y.H.; Park, K.S.; Eom, J.B.; Kim, M.J.; Rho, B.S.; Choi, H.Y. Interferometric fiber optic sensors. Sensors 2012, 12, 2467–2486, doi:10.3390/s120302467. 22736961
[94]
Lee, C.E.; Taylor, H.F. Sensors for Smart Structures Based upon the Fabry-Perot Interferometer. In Fiber Optic Smart Structures; Udd, E., Ed.; Wiley: New York, NY, USA, 1995; pp. 249–269.
[95]
Duan, D.W.; Rao, Y.J.; Wen, W.P.; Yao, J.; Wu, D.; Xu, L.C.; Zhu, T. In-line all-fibre Fabry-Perot interferometer high temperature sensor formed by large lateral offset splicing. Electron. Lett. 2011, 47, 1702–1703.
[96]
Duan, D.W.; Rao, Y.J.; Hou, Y.S.; Zhu, T. Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement. Appl. Opt. 2012, 51, 1033–1036, doi:10.1364/AO.51.001033. 22410979