Investigating the Quantitative Structure-Activity Relationships for Antibody Recognition of Two Immunoassays for Polycyclic Aromatic Hydrocarbons by Multiple Regression Methods
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants found in the environment. Immunoassays represent useful analytical methods to complement traditional analytical procedures for PAHs. Cross-reactivity (CR) is a very useful character to evaluate the extent of cross-reaction of a cross-reactant in immunoreactions and immunoassays. The quantitative relationships between the molecular properties and the CR of PAHs were established by stepwise multiple linear regression, principal component regression and partial least square regression, using the data of two commercial enzyme-linked immunosorbent assay (ELISA) kits. The objective is to find the most important molecular properties that affect the CR, and predict the CR by multiple regression methods. The results show that the physicochemical, electronic and topological properties of the PAH molecules have an integrated effect on the CR properties for the two ELISAs, among which molar solubility (Sm) and valence molecular connectivity index (3χv) are the most important factors. The obtained regression equations for RisC kit are all statistically significant (p < 0.005) and show satisfactory ability for predicting CR values, while equations for RaPID kit are all not significant (p > 0.05) and not suitable for predicting. It is probably because that the RisC immunoassay employs a monoclonal antibody, while the RaPID kit is based on polyclonal antibody. Considering the important effect of solubility on the CR values, cross-reaction potential (CRP) is calculated and used as a complement of CR for evaluation of cross-reactions in immunoassays. Only the compounds with both high CR and high CRP can cause intense cross-reactions in immunoassays.
References
[1]
F?hnrich, K.A.; Pravda, M.; Guilbault, G.G. Immunochemical determination of polycyclic aromatic hydrocarbons (PAHs). Anal. Lett. 2002, 35, 1269–1300, doi:10.1081/AL-120006666.
[2]
Matschulat, D.; Deng, A.; Niessner, R.; Knopp, D. Development of a highly sensitive monoclonal antibody based ELISA for detection of benzo[a]pyrene in potable water. Analyst 2005, 130, 1078–1086, doi:10.1039/b503636d. 15965533
[3]
Spier, C.R.; Bromage, E.S.; Harris, T.M.; Unger, M.A.; Kaattari, S.L. The development and evaluation of monoclonal antibodies for the detection of polycyclic aromatic hydrocarbons. Anal. Biochem. 2009, 387, 287–293, doi:10.1016/j.ab.2009.01.020. 19344658
[4]
Goryacheva, I.Y.; Eremin, S.A.; Shutaleva, E.A.; Suchanek, M.; Niessner, R.; Knopp, D. Development of a fluorescence polarization immunoassay for polycyclic aromatic hydrocarbons. Anal. Lett. 2007, 40, 1445–1460, doi:10.1080/00032710701297034.
[5]
Roda, A.; Simoni, P.; Mirasoli, M.; Baraldini, M.; Violante, F.S. Development of a chemiluminescent enzyme immunoassay for urinary 1-hydroxypyrene. Anal. Bioanal. Chem. 2002, 372, 751–758, doi:10.1007/s00216-002-1256-4. 12012185
[6]
Zhuang, H.S.; Zhou, C. Determination of anthracene by real-time immuno-polymerase chain reaction assay. Anal. Chim. Acta 2009, 633, 278–282, doi:10.1016/j.aca.2008.10.077. 19166734
[7]
Wei, M.Y.; Wen, S.D.; Yang, X.Q.; Guo, L.H. Development of redox-labeled electrochemical immunoassay for polycyclic aromatic hydrocarbons with controlled surface modification and catalytic voltammetric detection. Biosens. Bioelectron. 2009, 24, 2909–2914, doi:10.1016/j.bios.2009.02.031. 19321333
[8]
Kr?mer, P.M. A strategy to validate immunoassay test kits for TNT and PAHs as a field screening method for contaminated sites in Germany. Anal. Chim. Acta 1998, 376, 3–11, doi:10.1016/S0003-2670(98)00446-2.
[9]
Castillo, M.; Oubina, A.; Barceló, D. Evalution of ELISA kits followed by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry for the determination of organic pollutants in industrial effluents. Environ. Sci. Technol. 1998, 32, 2180–2184, doi:10.1021/es971042z.
[10]
Barceló, D.; Oubina, A.; Salau, J.S.; Perez, S. Determination of PAHs in river water samples by ELISA. Anal. Chim. Acta 1998, 376, 49–53, doi:10.1016/S0003-2670(98)00447-4.
[11]
Chuang, J.C.; van Emon, J.M.; Chou, Y.L.; Junod, N.; Finegold, J.K.; Wilson, N.K. Comparison of immunoassay and gas chromatography-mass spectrometry for measurement of polycyclic aromatic hydrocarbons in contaminated soil. Anal. Chim. Acta 2003, 486, 31–39, doi:10.1016/S0003-2670(03)00499-9.
[12]
Nording, M.; Haglund, P. Evaluation of the structure/cross-reactivity relationship of polycyclic aromatic compounds using an enzyme-linked immunosorbent assay kit. Anal. Chim. Acta 2003, 487, 43–50, doi:10.1016/S0003-2670(03)00466-5.
[13]
Nording, M.; Frech, K.; Persson, Y.; Forsman, M.; Haglund, P. On the semi-quantification of polycyclic aromatic hydrocarbons in contaminated soil by an enzyme-linked immunosorbent assay kit. Anal. Chim. Acta 2006, 555, 107–113, doi:10.1016/j.aca.2005.08.051.
[14]
Fillmann, G.; Bicego, M.C.; Zamboni, A.; Fileman, T.W.; Depledge, M.H.; Readman, J.W. Validation of immunoassay methods to determine hydrocarbon contamination in estuarine sediments. J. Braz. Soc. 2007, 18, 774–781, doi:10.1590/S0103-50532007000400016.
[15]
Rigou, P.; Saini, S.; Setford, S.J. Field-based supercritical fluid extraction and immunoassay for determination of PAHs in soils. Int. J. Environ. Anal. Chem. 2004, 84, 979–994, doi:10.1080/03067310410001729628.
[16]
Troisi, G.M.; Borjesson, L. Development of an immunoassay for the determination of polycyclic aromatic hydrocarbons in plasma samples from oiled seabirds. Environ. Sci. Technol. 2005, 39, 3748–3755, doi:10.1021/es048935t. 15952381
[17]
Fillmann, G.; Watson, G.M.; Howsam, M.; Francioni, E.; Depledge, M.H.; Readman, J.W. Urinary PAH metabolites biomarkers of exposure in aquatic environments. Environ. Sci. Technol. 2004, 38, 2649–2656, doi:10.1021/es0350839. 15180061
[18]
Kim, I.S.; Ritchie, L.; Setford, S.; Taylor, J.; Allen, M.; Wilson, G.; Heywood, R.; Pahlavanpour, B.; Saini, S. Quantitative immunoassay for determining polyaromatic hydrocarbons in electrical insulating oils. Anal. Chim. Acta 2001, 450, 13–25, doi:10.1016/S0003-2670(01)01386-1.
[19]
Zhang, Y.F.; Ma, Y.; Gao, Z.X.; Dai, S.G. Predicting the cross-reactivities of polycyclic aromatic hydrocarbons in ELISA by regression analysis and CoMFA methods. Anal. Bioanal. Chem. 2010, 397, 2551–2557, doi:10.1007/s00216-010-3785-6. 20449576
[20]
Mackay, D.; Shiu, W.Y.; Ma, K.C.; Lee, S.C. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, 2nd ed. ed.; Taylor & Francis: Boca Raton, FL, USA, 2006.
[21]
De Lima Ribeiro, F.A.; Ferreira, M.M.C. QSPR models of boiling point, octanol-water partition coefficient and retention time index of polycyclic aromatic hydrocarbons. J. Mol. Struct. Theochem 2003, 663, 109–126, doi:10.1016/j.theochem.2003.08.107.
[22]
Govers, H.; Ruepert, C.; Aiking, H. Quantitative structure-activity relationships for polycyclic aromatic hydrocarbons: Correlation between molecular connectivity, physico-chemical properties, bioconcentration and toxicity in Daphnia pulex. Chemosphere 1984, 13, 227–236, doi:10.1016/0045-6535(84)90129-2.
[23]
Xu, Z.L.; Xie, G.M.; Li, Y.X.; Wang, B.F.; Beier, R.C.; Lei, H.T.; Wang, H.; Shen, Y.D.; Sun, Y.M. Production and characterization of a broad-specificity polyclonal antibody for O,O-diethyl organophosphorus pesticides and a quantitative structure-activity relationship study of antibody recognition. Anal. Chim. Acta 2009, 647, 90–96, doi:10.1016/j.aca.2009.05.025. 19576391
[24]
Xu, Z.L.; Shen, Y.D.; Zheng, W.X.; Beier, R.C.; Xie, G.M.; Dong, J.X.; Yang, J.Y.; Wang, H.; Lei, H.T.; She, Z.G.; et al. Broad-specific immunoassay for O,O-diethyl organophosphorus pesticides: Application of molecular modeling to improve assay sensitivity and study antibody recognition. Anal. Chem. 2010, 82, 9314–9321, doi:10.1021/ac1018414. 20958019
[25]
Yuan, M.; Liu, B.; Liu, E.; Sheng, W.; Zhang, Y.; Crossan, A.; Kennedy, I.; Wang, S. Immunoassay for phenylurea herbicides: Application of molecular modeling and quantitative structure-activity relationship analysis on an antigen-antibody interaction study. Anal. Chem. 2011, 83, 4767–4774, doi:10.1021/ac200227v. 21539295