A major cause of high energy consumption for air conditioning in indoor spaces is the thermal storage characteristics of a building’s envelope concrete material; therefore, the physiological signals (temperature and humidity) within concrete structures are an important reference for building energy management. The current approach to measuring temperature and humidity within concrete structures (i.e., thermocouples and fiber optics) is limited by problems of wiring requirements, discontinuous monitoring, and high costs. This study uses radio frequency integrated circuits (RFIC) combined with temperature and humidity sensors (T/H sensors) for the design of a smart temperature and humidity information material (STHIM) that automatically, regularly, and continuously converts temperature and humidity signals within concrete and transmits them by radio frequency (RF) to the Building Physiology Information System (BPIS). This provides a new approach to measurement that incorporates direct measurement, wireless communication, and real-time continuous monitoring to assist building designers and users in making energy management decisions and judgments.
References
[1]
The Institute of Energy Economics, Japan. Available online: http://eneken.ieej.or.jp/en/ (accessed on 9 April 2012).
[2]
Lin, H.T. Ministry of the Interior: Taipei, Taiwan, 2007.
[3]
Chang, C.Y.; Hsiao, W.H.; Huang, S.M.; Guo, S.J. Supply and demand for building health check. J. Architect. 2007, 59, 93–112.
[4]
Alvarado, J.L.; Terrell, W.J.; Johnson, M.D. Passive cooling systems for cement-based roofs. Build. Environ. 2009, 44, 1869–1875, doi:10.1016/j.buildenv.2008.12.012.
[5]
Chou, D.C.; Chiou, J.J. A study on the insulation performance of a double skin roof induced by natural ventilation. J. Architect. 2007, 59, 79–92.
[6]
Ma, R.H.; Wang, Y.H.; Lee, C.Y. Wireless remote weather monitoring system based on MEMS technologies. Sensors 2011, 11, 2715–2727, doi:10.3390/s110302715. 22163762
[7]
Goran, S.; Milan, R.; Mirjana, M.; Vlastimir, R. Monitoring of water content in building materials using a wireless passive sensor. Sensors 2010, 10, 4270–4280, doi:10.3390/s100504270. 22399880
[8]
Zarzo, M.; Angel, F.N.; Fernando-Juan, G.D. Long-term monitoring of fresco paintings in the cathedral of valencia (Spain) through humidity and temperature sensors in various locations for preventive conservation. Sensors 2011, 11, 8685–8710, doi:10.3390/s110908685. 22164100
[9]
Halwatura, R.U.; Jayasinghe, M.T.R. Thermal performance of insulated roof slabs in tropical climates. Energy Build. 2008, 40, 1153–1160, doi:10.1016/j.enbuild.2007.10.006.
[10]
Al-Ajlan, S.A. Measurements of thermal properties of insulation materials by using transient plane source technique. Appl. Therm. Eng. 2006, 26, 2184–2191, doi:10.1016/j.applthermaleng.2006.04.006.
[11]
Qiu, K.; Haghighat, F. Modeling the combined conduction—Air infiltration through diffusive building envelope. Energy Build. 2007, 39, 1140–1150, doi:10.1016/j.enbuild.2006.11.013.
[12]
Chang, C.Y.; Hung, S.S.; Peng, Y.F. An evaluation of the embedment of a radio frequency integrated circuit with a temperature detector in building envelopes for energy conservation. Energy Build. 2011, 43, 2900–2907, doi:10.1016/j.enbuild.2011.07.009.
[13]
Lee, C.Y.; Su, A.; Liu, Y.C.; Chan, P.C.; Lin, C.H. Sensor fabrication method for in situ temperature and humidity monitoring of light emitting diodes. Sensors 2010, 10, 3363–3372, doi:10.3390/s100403363. 22319303
[14]
Song, K.; Wang, Q.; Liu, Q.; Zhang, H.Q.; Cheng, Y.G. A wireless electronic nose system using a Fe2O3 gas sensing array and least squares support vector regression. Sensors 2011, 11, 485–505, doi:10.3390/s110100485. 22346587
[15]
Wang, J.N.; Tang, J.L. Feasibility of fiber bragg grating and long-period fiber grating sensors under different environmental conditions. Sensors 2010, 10, 10105–10127, doi:10.3390/s101110105. 22163460
[16]
Lee, D. Development of light powered sensor networks for thermal comfort measurement. Sensors 2008, 8, 6417–6432, doi:10.3390/s8106417.
[17]
Ma, R.H.; Wang, D.A.; Hsueh, T.H.; Lee, C.Y. A MEMS-based flow rate and flow direction sensing platform with integrated temperature compensation scheme. Sensors 2009, 9, 5460–5476, doi:10.3390/s90705460. 22346708
[18]
Rivera, J.; Herrera, G.; Chacon, M.; Acosta, P.; Carrillo, M. Improved progressive polynomial algorithm for self-adjustment and optimal response in intelligent sensors. Sensors 2008, 8, 7410–7427, doi:10.3390/s8117410.
[19]
Chang, C.Y.; Hung, S.S. Implementing RFIC and sensor technology to measure temperature and humidity inside concrete structures. Constr. Build. Mater. 2012, 26, 628–637, doi:10.1016/j.conbuildmat.2011.06.066.
[20]
Leccardi, M.; Decarli, M.; Lorenzelli, L.; Milani, P.; Mettala, P.; Orava, R.; Barborini, E. Long-term outdoor reliability assessment of a wireless unit for air-quality monitoring based on nanostructured films integrated on micromachined platforms. Sensors 2012, 12, 8176–8192, doi:10.3390/s120608176. 22969394
[21]
Ruiz-Garcia, L.; Barreiro, P.; Robla, J.I.; Lunadei, L. Testing zigbee motes for monitoring refrigerated vegetable transportation under real conditions. Sensors 2010, 10, 4968–4982, doi:10.3390/s100504968. 22399917
[22]
Hande, A.; Polk, T.; Walker, W.; Bhatia, D. Self-powered wireless sensor networks for remote patient monitoring in hospitals. Sensors 2006, 6, 1102–1117, doi:10.3390/s6091102.
[23]
Balan, M.C.; Damian, M.; J?ntschi, L. Preliminary results on design and implementation of a solar radiation monitoring system. Sensors 2008, 8, 963–978.
[24]
Chang, C.Y.; Hung, S.S.; Peng, Y.F.; Chang, W.T.; Feng, H.Y. Building physiology information system for health monitoring in reinforced concrete structures. Intell. Build. Int. 2012, 4, 111–125, doi:10.1080/17508975.2011.642477.
[25]
Halwatura, R.U.; Jayasinghe, M.T.R. Thermal performance of insulated roof slabs in tropical climates. Energy Build. 2008, 40, 1153–1160, doi:10.1016/j.enbuild.2007.10.006.
[26]
Lertsatitthanakorn, C.; Atthajariyakul, S.; Soponronnarit, S. Techno-economical evaluation of a rice husk ash (RHA) based sand–cement block for reducing solar conduction heat gain to a building. Constr. Build. Mater. 2009, 23, 364–369, doi:10.1016/j.conbuildmat.2007.11.017.
Norris, A.; Saafi, M.; Romine, P. Temperature and moisture monitoring in concrete structures using embedded nanotechnology/microelectromechanical systems (MEMS) sensors. Constr. Build. Mater. 2008, 22, 111–120, doi:10.1016/j.conbuildmat.2006.05.047.
[29]
Wu, Z.J. Design of A Wireless Sensor and Control Module with Energy-Saving Strategy for Monitoring Sensing Parameters Inside Constructions of Building. Master Thesis, Feng Chia University, Taichung, Taiwan, 2011.